33 research outputs found

    The phases of deuterium at extreme densities

    Full text link
    We consider deuterium compressed to higher than atomic, but lower than nuclear densities. At such densities deuterium is a superconducting quantum liquid. Generically, two superconducting phases compete, a "ferromagnetic" and a "nematic" one. We provide a power counting argument suggesting that the dominant interactions in the deuteron liquid are perturbative (but screened) Coulomb interactions. At very high densities the ground state is determined by very small nuclear interaction effects that probably favor the ferromagnetic phase. At lower densities the symmetry of the theory is effectively enhanced to SU(3), and the quantum liquid enters a novel phase, neither ferromagnetic nor nematic. Our results can serve as a starting point for investigations of the phase dynamics of deuteron liquids, as well as exploration of the stability and dynamics of the rich variety of topological objects that may occur in phases of the deuteron quantum liquid, which range from Alice strings to spin skyrmions to Z_2 vortices.Comment: 9 pages, 6 figures; v2: fixed typo

    Time-resolved measurements of fast electron recirculation for relativistically intense femtosecond scale laser-plasma interactions

    Get PDF
    A key issue in realising the development of a number of applications of high-intensity lasers is the dynamics of the fast electrons produced and how to diagnose them. We report on measurements of fast electron transport in aluminium targets in the ultra-intense, short-pulse (<50 fs) regime using a high resolution temporally and spatially resolved optical probe. The measurements show a rapidly (≈0.5c) expanding region of Ohmic heating at the rear of the target, driven by lateral transport of the fast electron population inside the target. Simulations demonstrate that a broad angular distribution of fast electrons on the order of 60° is required, in conjunction with extensive recirculation of the electron population, in order to drive such lateral transport. These results provide fundamental new insight into fast electron dynamics driven by ultra-short laser pulses, which is an important regime for the development of laser-based radiation and particle sources

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Coupling static and dynamic compressions: First measurements in dense hydrogen

    No full text
    We demonstrate here a laser-driven shock wave in a hydrogen sample, pre-compressed in a diamond anvil cell. The compression factors of the dynamic and static techniques are multiplied. This approach allows access to a family of Hugoniot curves which span the P-T phase diagram of fluid hydrogen to high density. In this first-of-its-kind experiment, two hydrogen Hugoniot curves have been partially followed starting from pre-compression at pressures of 0.7 GPa and 1.2 GPa. Optical reflectance probing at two wavelengths reveals the onset of the conducting fluid state. The boundary line to conducting fluid hydrogen is suggested
    corecore