4,528 research outputs found
Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)
We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems
Resonant Processes in a Frozen Gas
We present a theory of resonant processes in a frozen gas of atoms
interacting via dipole-dipole potentials that vary as , where is
the interatomic separation. We supply an exact result for a single atom in a
given state interacting resonantly with a random gas of atoms in a different
state. The time development of the transition process is calculated both on-
and off-resonance, and the linewidth with respect to detuning is obtained as a
function of time . We introduce a random spin Hamiltonian to model a dense
system of resonators and show how it reduces to the previous model in the limit
of a sparse system. We derive approximate equations for the average effective
spin, and we use them to model the behavior seen in the experiments of Anderson
et al. and Lowell et al. The approach to equilibrium is found to be
proportional to ), where the constant is explicitly related to the system's parameters.Comment: 30 pages, 6 figure
Surfaces roughness effects on the transmission of Gaussian beams by anisotropic parallel plates
Influence of the plate surfaces roughness in precise ellipsometry experiments
is studied. The realistic case of a Gaussian laser beam crossing a uniaxial
platelet is considered. Expression for the transmittance is determined using
the first order perturbation theory. In this frame, it is shown that
interference takes place between the specular transmitted beam and the
scattered field. This effect is due to the angular distribution of the Gaussian
beam and is of first order in the roughness over wavelength ratio. As an
application, a numerical simulation of the effects of quartz roughness surfaces
at normal incidence is provided. The interference term is found to be strongly
connected to the random nature of the surface roughness.Comment: 18 pages, Journal of Physics D: Applied Physics, volume 36, issue 21,
pages 2697 - 270
An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models
While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls for reliable quantification of fluorescence signal. This streamlined methodology reads out the high density of information embedded in 3D culture systems, while maintaining a level of speed and efficiency traditionally achieved with global colorimetric reporters in order to facilitate broader implementation of 3D tumour models in therapeutic screening
Metals in high magnetic field: a new universality class of Fermi liquids
Parquet equations, describing the competition between superconducting and
density-wave instabilities, are solved for a three-dimensional isotropic metal
in a high magnetic field when only the lowest Landau level is filled. In the
case of a repulsive interaction between electrons, a phase transition to the
density-wave state is found at finite temperature. In the opposite case of
attractive interaction, no phase transition is found. With decreasing
temperature , the effective vertex of interaction between electrons
renormalizes toward a one-dimensional limit in a self-similar way with the
characteristic length (transverse to the magnetic field) decreasing as
( is a cutoff). Correlation functions have
new forms, previously unknown for conventional one-dimensional or
three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included
On Reduction of Critical Velocity in a Model of Superfluid Bose-gas with Boundary Interactions
The existence of superfluidity in a 3D Bose-gas can depend on boundary
interactions with channel walls. We study a simple model where the dilute
moving Bose-gas interacts with the walls via hard-core repulsion. Special
boundary excitations are introduced, and their excitation spectrum is
calculated within a semiclassical approximation. It turns out that the state of
the moving Bose-gas is unstable with respect to the creation of these boundary
excitations in the system gas + walls, i.e. the critical velocity vanishes in
the semiclassical (Bogoliubov) approximation. We discuss how a condensate wave
function, the boundary excitation spectrum and, hence, the value of the
critical velocity can change in more realistic models, in which ``smooth''
attractive interaction between the gas and walls is taken into account. Such a
surface mode could exist in ``soft matter'' containers with flexible walls.Comment: 9 pages (RevTeX), two figures (.ps) incorporated by epsf. submitted
to Phys. Lett.
Target Zones in History and Theory: Lessons from an Austro-Hungarian Experiment (1896-1914)
The first known experiment with an exchange rate band took place in Austria-
Hungary between 1896 and 1914. The rationale for introducing this policy rested
on precisely those intuitions that the modern literature has emphasized: the band
was designed to secure both exchange rate stability and monetary policy
autonomy. However, unlike more recent experiences, such as the ERM, this
policy was not undermined by credibility problems. The episode provides an ideal
testing ground for some important ideas in modern macroeconomics: specifically,
can formal rules, when faithfully adhered to, provide policy makers with some
advantages such as short term autonomy? First, we find that a credible band has a
"microeconomic" influence on exchange rate stability. By reducing uncertainty, a
credible fluctuation band improves the quality of expectations, a channel that has been neglected in the modern literature. Second, we show that the standard test of the basic target zone model is flawed and develop an alternative methodology. We believe that these findings shed a new light on the economics of exchange rate bands
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)
Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for
the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by
the ANTARES Collaboratio
- …
