The existence of superfluidity in a 3D Bose-gas can depend on boundary
interactions with channel walls. We study a simple model where the dilute
moving Bose-gas interacts with the walls via hard-core repulsion. Special
boundary excitations are introduced, and their excitation spectrum is
calculated within a semiclassical approximation. It turns out that the state of
the moving Bose-gas is unstable with respect to the creation of these boundary
excitations in the system gas + walls, i.e. the critical velocity vanishes in
the semiclassical (Bogoliubov) approximation. We discuss how a condensate wave
function, the boundary excitation spectrum and, hence, the value of the
critical velocity can change in more realistic models, in which ``smooth''
attractive interaction between the gas and walls is taken into account. Such a
surface mode could exist in ``soft matter'' containers with flexible walls.Comment: 9 pages (RevTeX), two figures (.ps) incorporated by epsf. submitted
to Phys. Lett.