3,240 research outputs found

    Association between spondylolisthesis and L5 fracture in patients with osteogenesis imperfecta

    Get PDF
    To investigate if an association between spondylolisthesis and L5 fracture occurs in patients affected by Osteogenesis Imperfecta (O.I.). Methods Anteroposterior and lateral radiograms were performed on the sample (38 O.I. patients, of whom 19 presenting listhesis); on imaging studies spondylolisthesis was quantified according to the Meyerding classification. Genant’s semiquantitative classification was applied on lateral view to evaluate the L5 fractures; skeleton spinal morphometry (MXA) was carried out on the same images to collect quantitative data comparable and superimposable to Genant’s classification. The gathered information were analyzed through statistical tests (O.R., χ 2 test, Fisher’s test, Pearson’s correlation coefficient). Results The prevalence of L5 fractures is 73.7 % in O.I. patients with spondylolisthesis and their risk of experiencing such a fracture is twice than O.I. patients without listhesis (OR 2.04). Pearson’s χ 2 test demonstrates an association between L5 spondylolisthesis and L5 fracture, especially with moderate, posterior fractures (p = 0.017) and primarily in patients affected by type IV O.I. Conclusions Spondylolisthesis represents a risk factor for the development of more severe and biconcave/posterior type fractures of L5 in patients suffering from O.I., especially in type IV. This fits the hypothesis that the anterior sliding of the soma of L5 alters the dynamics of action of the load forces, localizing them on the central and posterior heights that become the focus of the stress due to movement of flexion–extension and twisting of the spine. As a result, there is greater probability of developing an important subsidence of the central and posterior walls of the soma

    Resonant Processes in a Frozen Gas

    Full text link
    We present a theory of resonant processes in a frozen gas of atoms interacting via dipole-dipole potentials that vary as r−3r^{-3}, where rr is the interatomic separation. We supply an exact result for a single atom in a given state interacting resonantly with a random gas of atoms in a different state. The time development of the transition process is calculated both on- and off-resonance, and the linewidth with respect to detuning is obtained as a function of time tt. We introduce a random spin Hamiltonian to model a dense system of resonators and show how it reduces to the previous model in the limit of a sparse system. We derive approximate equations for the average effective spin, and we use them to model the behavior seen in the experiments of Anderson et al. and Lowell et al. The approach to equilibrium is found to be proportional to exp⁡(−γeqt\exp (-\sqrt{\gamma_{eq}t}), where the constant γeq\gamma _{eq} is explicitly related to the system's parameters.Comment: 30 pages, 6 figure

    Evolution of Conversations in the Age of Email Overload

    Full text link
    Email is a ubiquitous communications tool in the workplace and plays an important role in social interactions. Previous studies of email were largely based on surveys and limited to relatively small populations of email users within organizations. In this paper, we report results of a large-scale study of more than 2 million users exchanging 16 billion emails over several months. We quantitatively characterize the replying behavior in conversations within pairs of users. In particular, we study the time it takes the user to reply to a received message and the length of the reply sent. We consider a variety of factors that affect the reply time and length, such as the stage of the conversation, user demographics, and use of portable devices. In addition, we study how increasing load affects emailing behavior. We find that as users receive more email messages in a day, they reply to a smaller fraction of them, using shorter replies. However, their responsiveness remains intact, and they may even reply to emails faster. Finally, we predict the time to reply, length of reply, and whether the reply ends a conversation. We demonstrate considerable improvement over the baseline in all three prediction tasks, showing the significant role that the factors that we uncover play, in determining replying behavior. We rank these factors based on their predictive power. Our findings have important implications for understanding human behavior and designing better email management applications for tasks like ranking unread emails.Comment: 11 page, 24th International World Wide Web Conferenc

    Compliant morphing structures from twisted bulk metallic glass ribbons

    Get PDF
    In this work, we investigate the use of pre-twisted metallic ribbons as building blocks for shape-changing structures. We manufacture these elements by twisting initially flat ribbons about their (lengthwise) centroidal axis into a helicoidal geometry, then thermoforming them to make this configuration a stress-free reference state. The helicoidal shape allows the ribbons to have preferred bending directions that vary throughout their length. These bending directions serve as compliant joints and enable several deployed and stowed configurations that are unachievable without pre-twist, provided that compaction does not induce material failure. We fabricate these ribbons using a bulk metallic glass (BMG), for its exceptional elasticity and thermoforming attributes. Combining numerical simulations, an analytical model based on a geometrically nonlinear plate theory and torsional experiments, we analyze the finite-twisting mechanics of various ribbon geometries. We find that, in ribbons with undulated edges, the twisting deformations can be better localized onto desired regions prior to thermoforming. Finally, we join multiple ribbons to create deployable systems with complex morphing attributes enabled by the intrinsic chirality of our twisted structural elements. Our work proposes a framework for creating fully metallic, yet compliant structures that may find application as elements for space structures and compliant robots

    A simple noninvasive pressure–time index at the mouth to measure respiratory load during acute exacerbation of COPD A comparison with normal volunteers

    Get PDF
    AbstractWe assessed the validity of the pressure–time index (PTI) measured at the mouth as a noninvasive and simplified alternative to conventional tension–time index for assessing respiratory load and inspiratory muscle force reserve. PTI was measured within 48 h of hospital admission and at 24 h before discharge in 37 consecutive patients with acute exacerbation of chronic obstructive pulmonary disease(COPD) using the equation PTI = (Pawo/MIP)(TI/TT)100, where Pawo is the mean airway pressure measured at the mouth, MIP the maximal inspiratory pressure, andTI /TT the inspiratory time (TI) to total cycle length (TT) ratio. Controls were 30 normal volunteers with similar anthropometric features. Mean (± SD) PTI values were significantly higher in COPD patients (0.29 ± 0.10) than in controls (0.11 ± 0.04) (P<0.001) primarily because MIP and TI/TT were significantly lower and Pawo was higher in the COPD population than in controls. As a result of improvement of the respiratory condition, PTI values were significantly lower at discharge (0.20±0.10 vs. 0.29±0.10, P<0.001) due to a drop in Pawo and an increase in MIP. The accuracy of different PTI cutpoints was assessed by comparison of the receiver operating characteristics curves. Best cutpoint values for differentiating COPD patients on admission and at hospital discharge from controls were 0.13 (positive predictive value 76%) and 0.17 (positive predictive value 92%), respectively. Noninvasive PTI measured at the mouth provides a valid and easy method for assessing respiratory muscle load and reserve. Changes in PTI values reflect functional improvement following treatment of acute exacerbation of COPD

    Surface wave non-reciprocity via time-modulated metamaterials

    Get PDF
    We investigate how Rayleigh waves interact with time-modulated resonators located on the free surface of a semi-infinite elastic medium. We begin by studying the dynamics of a single resonator with time-modulated stiffness, we evaluate the accuracy of an analytical approximation of the resonator response and identify the parameter ranges in which its behavior remains stable. Then, we develop an analytical model to describe the interaction between surface waves and an array of resonators with spatio-temporally modulated stiffness. By combining our analytical models with full-scale numerical simulations, we demonstrate that spatio-temporal stiffness modulation of this elastic metasurface leads to the emergence of non-reciprocal features in the Rayleigh wave spectrum. Specifically, we show how the frequency content of a propagating signal can be filtered and converted when traveling through the modulated medium, and illustrate how surface-to-bulk wave conversion plays a role in these phenomena. Throughout this article, we indicate bounds of modulation parameters for which our theory is reliable, thus providing guidelines for future experimental studies on the topic

    Experimental analysis of the station keeping response of a double-barge float-over system with an elastically scaled physical model

    Get PDF
    In this paper, an experimental investigation of the global response to waves relative to a newly developed float-over concept by TechnipFMC Rome Operating Center for transportation, installation and decommissioning of the off-shore platform topside is presented. A flexible scaled model of the float-over system was tested in the wave basin to determine the range of the sea-state conditions for which the response of the catamaran float-over is acceptable for mating operations. The present analysis is part of a more extensive experimental campaign which has involved also the use of a scaled rigid physical model (Dessi et al., 2016) and numerical simulations for which the collected data provide also a validation database

    Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials

    Get PDF
    When considered by a biorefinery approach, an agroindustrial byproduct such as wheat bran can find a new standing in the field of fabrication of mycelium-based materials. The present work reports on a systematic study on the effect of wheat bran as an upgrading feedstock for the growth and development of fully biobased and biodegradable composites. Two families of materials based on bran/cotton and bran/hemp mixtures were fabricated on an industrial scale. The natural materials thus obtained were fully characterized and their end-life was assessed in composting conditions. The research focusses on two main aspects: the nutritional contribution of bran for the fungal growth and its effect on the mechanical properties as a filler in the final composites. It must be noted that the valorization and exploitation of a byproduct such as bran can have a considerable impact on the industrial production of mycelium-based composite materials, by reducing the time of production while increasing their mechanical performances
    • 

    corecore