108 research outputs found

    Computational Results for Extensive-Form Adversarial Team Games

    Get PDF
    We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define three different scenarios according to the communication capabilities of the team. In the first, the teammates can communicate and correlate their actions both before and during the play. In the second, they can only communicate before the play. In the third, no communication is possible at all. We define the most suitable solution concepts, and we study the inefficiency caused by partial or null communication, showing that the inefficiency can be arbitrarily large in the size of the game tree. Furthermore, we study the computational complexity of the equilibrium-finding problem in the three scenarios mentioned above, and we provide, for each of the three scenarios, an exact algorithm. Finally, we empirically evaluate the scalability of the algorithms in random games and the inefficiency caused by partial or null communication

    Team-Maxmin Equilibrium: Efficiency Bounds and Algorithms

    Get PDF
    The Team-maxmin equilibrium prescribes the optimal strategies for a team of rational players sharing the same goal and without the capability of correlating their strategies in strategic games against an adversary. This solution concept can capture situations in which an agent controls multiple resources-corresponding to the team members-that cannot communicate. It is known that such equilibrium always exists and it is unique (unless degeneracy) and these properties make it a credible solution concept to be used in real-world applications, especially in security scenarios. Nevertheless, to the best of our knowledge, the Team-maxmin equilibrium is almost completely unexplored in the literature. In this paper, we investigate bounds of (in)efficiency of the Team-maxmin equilibrium w.r.t. the Nash equilibria and w.r.t. the Maxmin equilibrium when the team members can play correlated strategies. Furthermore, we study a number of algorithms to find and/or approximate an equilibrium, discussing their theoretical guarantees and evaluating their performance by using a standard testbed of game instances

    Persuading Voters: It's Easy to Whisper, It's Hard to Speak Loud

    Full text link
    We focus on the following natural question: is it possible to influence the outcome of a voting process through the strategic provision of information to voters who update their beliefs rationally? We investigate whether it is computationally tractable to design a signaling scheme maximizing the probability with which the sender's preferred candidate is elected. We focus on the model recently introduced by Arieli and Babichenko (2019) (i.e., without inter-agent externalities), and consider, as explanatory examples, kk-voting rule and plurality voting. There is a sharp contrast between the case in which private signals are allowed and the more restrictive setting in which only public signals are allowed. In the former, we show that an optimal signaling scheme can be computed efficiently both under a kk-voting rule and plurality voting. In establishing these results, we provide two general (i.e., applicable to settings beyond voting) contributions. Specifically, we extend a well known result by Dughmi and Xu (2017) to more general settings, and prove that, when the sender's utility function is anonymous, computing an optimal signaling scheme is fixed parameter tractable w.r.t. the number of receivers' actions. In the public signaling case, we show that the sender's optimal expected return cannot be approximated to within any factor under a kk-voting rule. This negative result easily extends to plurality voting and problems where utility functions are anonymous

    Public Bayesian persuasion: being almost optimal and almost persuasive

    Get PDF
    We study algorithmic Bayesian persuasion problems in which the principal (a.k.a. the sender) has to persuade multiple agents (a.k.a. receivers) by using public communication channels. Specifically, our model follows the multi-receiver model with no inter-agent externalities introduced by Arieli and Babichenko (J Econ Theory 182:185–217, 2019). It is known that the problem of computing a sender-optimal public persuasive signaling scheme is not approximable even in simple settings. Therefore, prior works usually focus on determining restricted classes of the problem for which efficient approximation is possible. Typically, positive results in this space amounts to finding bi-criteria approximation algorithms yielding an almost optimal and almost persuasive solution in polynomial time. In this paper, we take a different perspective and study the persuasion problem in the general setting where the space of the states of nature, the action space of the receivers, and the utility function of the sender can be arbitrary. We fully characterize the computational complexity of computing a bi-criteria approximation of an optimal public signaling scheme in such settings. In particular, we show that, assuming the Exponential Time Hypothesis, solving this problem requires at least a quasi-polynomial number of steps even in instances with simple utility functions and binary action spaces such as an election with the k-voting rule. In doing so, we prove that a relaxed version of the MAXIMUM FEASIBLE SUBSYSTEM OF LINEAR INEQUALITIES problem requires at least quasi-polynomial time to be solved. Finally, we close the gap by providing a quasi-polynomial time bi-criteria approximation algorithm for arbitrary public persuasion problems that, under mild assumptions, yields a QPTAS

    Signaling in Bayesian Network Congestion Games: the Subtle Power of Symmetry

    Get PDF
    Network congestion games are a well-understood model of multi-agent strategic interactions. Despite their ubiquitous applications, it is not clear whether it is possible to design information structures to ameliorate the overall experience of the network users. We focus on Bayesian games with atomic players, where network vagaries are modeled via a (random) state of nature which determines the costs incurred by the players. A third-party entity---the sender---can observe the realized state of the network and exploit this additional information to send a signal to each player. A natural question is the following: is it possible for an informed sender to reduce the overall social cost via the strategic provision of information to players who update their beliefs rationally? The paper focuses on the problem of computing optimal ex ante persuasive signaling schemes, showing that symmetry is a crucial property for its solution. Indeed, we show that an optimal ex ante persuasive signaling scheme can be computed in polynomial time when players are symmetric and have affine cost functions. Moreover, the problem becomes NP-hard when players are asymmetric, even in non-Bayesian settings

    No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium

    Full text link
    The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form (that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous moves, as well as private information. Because of the sequential nature and presence of partial information in the game, extensive-form correlation has significantly different properties than the normal-form counterpart, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to normal-form correlated equilibrium. However, it was currently unknown whether EFCE emerges as the result of uncoupled agent dynamics. In this paper, we give the first uncoupled no-regret dynamics that converge to the set of EFCEs in nn-player general-sum extensive-form games with perfect recall. First, we introduce a notion of trigger regret in extensive-form games, which extends that of internal regret in normal-form games. When each player has low trigger regret, the empirical frequency of play is close to an EFCE. Then, we give an efficient no-trigger-regret algorithm. Our algorithm decomposes trigger regret into local subproblems at each decision point for the player, and constructs a global strategy of the player from the local solutions at each decision point
    • …
    corecore