15 research outputs found

    Alterations in the Chromatin Environment Following the Introduction of DNA Breaks

    Get PDF
    The presence of DNA breaks has extensive biochemical implications for the integrity of the genome. It is well established that distinct DNA damage response proteins are recruited to, and accumulate at, sites of genomic lesions, including kinases that initiate multiple DNA damage signaling cascades. The repair of DNA breaks is facilitated by the phosphorylation of H2AX, which organizes DNA damage response factors in the vicinity of the lesion. Metabolism of the DNA breaks occurs in a chromatin environment and modulating chromatin structure is necessary for the fidelity of the DNA damage response. We set out to determine in living cells both how chromatin is remodeled in the presence of DNA breaks and whether the establishment of large sub-cellular DNA damage response domains influences other DNA metabolic processes, such as transcription. Using a photoactivatable histone H2B, we examined the mobility and structure of chromatin immediately after the introduction of DNA breaks. We find that chromatin-containing damaged DNA exhibits limited mobility but undergoes an initial energy-dependent local expansion that occurs independently of H2AX and ATM. We also took advantage of the large copy number, tandem gene arrangement, and spatial organization of ribosomal transcription units as a model system to measure the kinetics of transcription in real time in the presence of DNA breaks. We find that RNA polI inhibition is not the direct result of the physical DNA break but mediated by ATM kinase activity and surrogate DNA repair proteins. We propose that the localized opening of chromatin at DNA breaks establishes an accessible biochemically unique sub-nuclear environment that facilitates DNA damage signaling and repair

    Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest

    Get PDF
    Bloom's syndrome is a rare autosomal recessive genetic disorder characterized by chromosomal aberrations, genetic instability, and cancer predisposition, all of which may be the result of abnormal signal transduction during DNA damage recognition. Here, we show that BLM is an intermediate responder to stalled DNA replication forks. BLM colocalized and physically interacted with the DNA damage response proteins 53BP1 and H2AX. Although BLM facilitated physical interaction between p53 and 53BP1, 53BP1 was required for efficient accumulation of both BLM and p53 at the sites of stalled replication. The accumulation of BLM/53BP1 foci and the physical interaction between them was independent of Îł-H2AX. The active Chk1 kinase was essential for both the accurate focal colocalization of 53BP1 with BLM and the consequent stabilization of BLM. Once the ATR/Chk1- and 53BP1-mediated signal from replicational stress is received, BLM functions in multiple downstream repair processes, thereby fulfilling its role as a caretaker tumor suppressor

    H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis.

    Get PDF
    During meiotic prophase in male mammals, the X and Y chromosomes condense to form a macrochromatin body, termed the sex, or XY, body, within which X- and Y-linked genes are transcriptionally repressed. The molecular basis and biological function of both sex body formation and meiotic sex chromosome inactivation (MSCI) are unknown. A phosphorylated form of H2AX, a histone H2A variant implicated in DNA repair, accumulates in the sex body in a manner independent of meiotic recombination-associated double-strand breaks. Here we show that the X and Y chromosomes of histone H2AX-deficient spermatocytes fail to condense to form a sex body, do not initiate MSCI, and exhibit severe defects in meiotic pairing. Moreover, other sex body proteins, including macroH2A1.2 and XMR, do not preferentially localize with the sex chromosomes in the absence of H2AX. Thus, H2AX is required for the chromatin remodeling and associated silencing in male meiosis.S

    Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis

    No full text
    The chromosomal instability syndromes Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT) share many overlapping phenotypes, including cancer predisposition, radiation sensitivity, cell-cycle checkpoint defects, immunodeficiency, and gonadal dysfunction. The NBS protein Nbs1 is not only a downstream target of AT mutated (ATM) kinase but also acts upstream, promoting optimal ATM activation, ATM recruitment to breaks, and ATM accessibility to substrates. By reconstituting Nbs1 knockout mice with bacterial artificial chromosomes, we have assessed the contribution of distinct regions of Nbs1 to the ATM-dependent DNA damage response. We find that T cell and oocyte development, as well as DNA damage-induced G2/M and S phase checkpoint arrest and radiation survival are dependent on the N-terminal forkhead-associated domain, but not on the principal residues phosphorylated by ATM (S278 and S343) or on the evolutionarily conserved C-terminal region of Nbs1. However, the C-terminal region regulates irradiation-induced apoptosis. These studies provide insight into the complex interplay between Nbs1 and ATM in the DNA damage response

    A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse

    No full text
    H4K20 methylation is a broad chromatin modification that has been linked with diverse epigenetic functions. Several enzymes target H4K20 methylation, consistent with distinct mono-, di-, and trimethylation states controlling different biological outputs. To analyze the roles of H4K20 methylation states, we generated conditional null alleles for the two Suv4-20h histone methyltransferase (HMTase) genes in the mouse. Suv4-20h-double-null (dn) mice are perinatally lethal and have lost nearly all H4K20me3 and H4K20me2 states. The genome-wide transition to an H4K20me1 state results in increased sensitivity to damaging stress, since Suv4-20h-dn chromatin is less efficient for DNA double-strand break (DSB) repair and prone to chromosomal aberrations. Notably, Suv4-20h-dn B cells are defective in immunoglobulin class-switch recombination, and Suv4-20h-dn deficiency impairs the stem cell pool of lymphoid progenitors. Thus, conversion to an H4K20me1 state results in compromised chromatin that is insufficient to protect genome integrity and to process a DNA-rearranging differentiation program in the mouse

    DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1.

    No full text
    Activation of the ataxia telangiectasia mutated (ATM) kinase triggers diverse cellular responses to ionizing radiation (IR), including the initiation of cell cycle checkpoints. Histone H2AX, p53 binding-protein 1 (53BP1) and Chk2 are targets of ATM-mediated phosphorylation, but little is known about their roles in signalling the presence of DNA damage. Here, we show that mice lacking either H2AX or 53BP1, but not Chk2, manifest a G2-M checkpoint defect close to that observed in ATM(-/-) cells after exposure to low, but not high, doses of IR. Moreover, H2AX regulates the ability of 53BP1 to efficiently accumulate into IR-induced foci. We propose that at threshold levels of DNA damage, H2AX-mediated concentration of 53BP1 at double-strand breaks is essential for the amplification of signals that might otherwise be insufficient to prevent entry of damaged cells into mitosis.These studies were in part motivated by discussions with T. Halazonetis, who suggested examining the effects of low-dose IR, and we thank T. Halazonetis for sharing unpublished results. We also thank M. Lichten, J. Chung, A. Lee, S. Petersen and A. Singer for critical comments on the manuscript, and M. Kruhlack for assistance with microscopy. P.B.C was supported by a grant from The Robert Welch Foundation.S
    corecore