159 research outputs found

    The Impact of Stellar Surface Magnetoconvection and Oscillations on the Detection of Temperate, Earth-Mass Planets Around Sun-Like Stars

    Get PDF
    Detecting and confirming terrestrial planets is incredibly difficult due to their tiny size and mass relative to Sun-like host stars. However, recent instrumental advancements are making the detection of Earth-like exoplanets technologically feasible. For example, Kepler and TESS photometric precision means we can identify Earth-sized candidates (and PLATO in the future will add many long-period candidates to the list), while spectrographs such as ESPRESSO and EXPRES (with an aimed radial velocity precision [RV] near 10 cm/s) mean we will soon reach the instrumental precision required to confirm Earth-mass planets in the habitable zones of Sun-like stars. However, many astrophysical phenomena on the surfaces of these host stars can imprint signatures on the stellar absorption lines used to detect the Doppler wobble induced by planetary companions. The result is stellar-induced spurious RV shifts that can mask or mimic planet signals. This review provides a brief overview of how stellar surface magnetoconvection and oscillations can impact low-mass planet confirmation and the best-tested strategies to overcome this astrophysical noise. These noise reduction strategies originate from a combination of empirical motivation and a theoretical understanding of the underlying physics. The most recent predications indicate that stellar oscillations for Sun-like stars may be averaged out with tailored exposure times, while granulation may need to be disentangled by inspecting its imprint on the stellar line profile shapes. Overall, the literature suggests that Earth-analog detection should be possible, with the correct observing strategy and sufficient data collection.Comment: 14 pages, 10 figures, invited review article for a Special Issue on the "Detection and Characterization of Extrasolar Planets" in Geosciences, Guest Editors: M. Oshagh, M. and J. Martinez-Frias, accepted on 17 January 201

    Refined architecture of the WASP-8 system: a cautionary tale for traditional Rossiter-McLaughlin analysis

    Full text link
    Probing the trajectory of a transiting planet across the disk of its star through the analysis of its Rossiter-McLaughlin effect can be used to measure the differential rotation of the host star and the true obliquity of the system. Highly misaligned systems could be particularly conducive to these mesurements, which is why we reanalysed the HARPS transit spectra of WASP-8b using the 'Rossiter-McLaughlin effect reloaded' (reloaded RM) technique. This approach allows us to isolate the local stellar CCF emitted by the planet-occulted regions. As a result we identified a \sim35% variation in the local CCF contrast along the transit chord, which might trace a deepening of the stellar lines from the equator to the poles. Whatever its origin, such an effect cannot be detected when analyzing the RV centroids of the disk-integrated CCFs through a traditional velocimetric analysis of the RM effect. Consequently it injected a significant bias into the results obtained by Queloz et al. (2010) for the projected rotational velocity veqsiniv_{eq} \sin i_{\star} (1.590.09+0.08\stackrel{+0.08}{_{-0.09}} km/s) and the sky-projected obliquity λ\lambda (-123.04.4+3.4\stackrel{+3.4}{_{-4.4}}^{\circ}). Using our technique, we measured these values to be veqsiniv_{eq} \sin i_{\star} = 1.90±\pm0.05 km/s and λ\lambda = -143.01.5+1.6\stackrel{+1.6}{_{-1.5}}^{\circ}. We found no compelling evidence for differential rotation of the star, although there are hints that WASP-8 is pointing away from us with the stellar poles rotating about 25% slower than the equator. Measurements at higher accuracy during ingress/egress will be required to confirm this result. In contrast to the traditional analysis of the RM effect, the reloaded RM technique directly extracts the local stellar CCFs, allowing us to analyze their shape and to measure their RV centroids, unbiased by variations in their contrast or FWHM.Comment: Accepted for publication in A&A. 12 page

    Understanding Astrophysical Noise from Stellar Surface Magneto-Convection

    Full text link
    To obtain cm/s precision, stellar surface magneto-convection must be disentangled from observed radial velocities (RVs). In order to understand and remove the convective signature, we create Sun-as-a-star model observations based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star model observations, we find several line characteristics are correlated with the induced RV shifts. The aim of this campaign is to feed directly into future high precision RV studies, such as the search for habitable, rocky worlds, with forthcoming spectrographs such as ESPRESSO.Comment: 6 pages, 3 figures; presented at the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CoolStars18); to appear in the proceedings of Lowell Observatory (9-13 June 2014), edited by G. van Belle & H. Harris. Updated with correct y-axis units on righthand plot in figure

    A cautionary tale: limitations of a brightness-based spectroscopic approach to chromatic exoplanet radii

    Get PDF
    Determining wavelength-dependent exoplanet radii measurements is an excellent way to probe the composition of exoplanet atmospheres. In light of this, Borsa et al. (2016) sought to develop a technique to obtain such measurements by comparing ground-based transmission spectra to the expected brightness variations during an exoplanet transit. However, we demonstrate herein that this is not possible due to the transit light curve normalisation necessary to remove the effects of the Earth's atmosphere on the ground-based observations. This is because the recoverable exoplanet radius is set by the planet-to-star radius ratio within the transit light curve; we demonstrate this both analytically and with simulated planet transits, as well as through a reanalysis of the HD 189733b data.Comment: 5 pages, 2 figures, 1 table, accepted to A&

    A geometrical origin for the covariant entropy bound

    Full text link
    Causal diamond-shaped subsets of space-time are naturally associated with operator algebras in quantum field theory, and they are also related to the Bousso covariant entropy bound. In this work we argue that the net of these causal sets to which are assigned the local operator algebras of quantum theories should be taken to be non orthomodular if there is some lowest scale for the description of space-time as a manifold. This geometry can be related to a reduction in the degrees of freedom of the holographic type under certain natural conditions for the local algebras. A non orthomodular net of causal sets that implements the cutoff in a covariant manner is constructed. It gives an explanation, in a simple example, of the non positive expansion condition for light-sheet selection in the covariant entropy bound. It also suggests a different covariant formulation of entropy bound.Comment: 20 pages, 8 figures, final versio

    Orbital misalignment of the super-Earth π\pi Men c with the spin of its star

    Get PDF
    Planet-planet scattering events can leave an observable trace of a planet's migration history in the form of orbital misalignment with respect to the the stellar spin axis, which is measurable from spectroscopic timeseries taken during transit. We present high-resolution spectroscopic transits observed with ESPRESSO of the close-in super-Earth π\pi Men c. The system also contains an outer giant planet on a wide, eccentric orbit, recently found to be inclined with respect to the inner planetary orbit. These characteristics are reminiscent of past dynamical interactions. We successfully retrieve the planet-occulted light during transit and find evidence that the orbit of π\pi Men c is moderately misaligned with the stellar spin axis with λ=24.0±4.1\lambda = -24.0^\circ \pm 4.1^\circ (ψ=26.94.7+5.8\psi = 26.9^{\circ +5.8^\circ}_{\,-4.7^\circ}). This is consistent with the super-Earth π\pi Men c having followed a high-eccentricity migration followed by tidal circularisation, and hints that super-Earths can form at large distances from their star. We also detect clear signatures of solar-like oscillations within our ESPRESSO radial velocity timeseries, where we reach a radial velocity precision of 20{\sim}20 cm/s. We model the oscillations using Gaussian processes and retrieve a frequency of maximum oscillation, νmax=277160+65\nu_\text{max} = 2771^{+65}_{-60} μ\muHz. These oscillations makes it challenging to detect the Rossiter-McLaughlin effect using traditional methods. We are, however, successful using the reloaded Rossiter-McLaughlin approach. Finally, in an appendix we also present updated physical parameters and ephemerides for π\pi Men c from a Gaussian process transit analysis of the full TESS Cycle 1 data.Comment: 20 pages, 11 figures. Published in MNRA

    Geometric entropy, area, and strong subadditivity

    Full text link
    The trace over the degrees of freedom located in a subset of the space transforms the vacuum state into a density matrix with non zero entropy. This geometric entropy is believed to be deeply related to the entropy of black holes. Indeed, previous calculations in the context of quantum field theory, where the result is actually ultraviolet divergent, have shown that the geometric entropy is proportional to the area for a very special type of subsets. In this work we show that the area law follows in general from simple considerations based on quantum mechanics and relativity. An essential ingredient of our approach is the strong subadditive property of the quantum mechanical entropy.Comment: Published versio

    Stellar surface magneto-convection as a source of astrophysical noise II. Center-to-limb parameterisation of absorption line profiles and comparison to observations

    Get PDF
    Manifestations of stellar activity (such as star-spots, plage/faculae, and convective flows) are well known to induce spectroscopic signals often referred to as astrophysical noise by exoplanet hunters. For example, setting an ultimate goal of detecting true Earth-analogs demands reaching radial velocity (RV) precisions of ~9 cm/s. While this is becoming technically feasible with the latest generation of highly stabilised spectrographs, it is astrophysical noise that sets the true fundamental barrier on attainable RV precisions. In this paper we parameterise the impact of solar surface magneto-convection on absorption line profiles, and extend the analysis from the solar disc centre (Paper I) to the solar limb. Off disc-centre, the plasma flows orthogonal to the granule tops begin to lie along the line-of-sight and those parallel to the granule tops are no longer completely aligned with the observer. Moreover, the granulation is corrugated and the granules can block other granules, as well as the intergranular lane components. Overall, the visible plasma flows and geometry of the corrugated surface significantly impact the resultant line profiles and induce centre-to-limb variations in shape and net position. We detail these herein, and compare to various solar observations. We find our granulation parameterisation can recreate realistic line profiles and induced radial velocity shifts, across the stellar disc, indicative of both those found in computationally heavy radiative 3D magnetohydrodynamical simulations and empirical solar observations.Comment: 17 pages, 14 figures, accepted to Ap

    Stellar Surface Magnetoconvection as a Source of Astrophysical Noise. III. Sun-as-a-Star Simulations and Optimal Noise Diagnostics

    Get PDF
    Stellar surface magnetoconvection (granulation) creates asymmetries in the observed stellar absorption lines that can subsequently manifest themselves as spurious radial velocities shifts. In turn, this can then mask the Doppler-reflex motion induced by orbiting planets on their host stars, and represents a particular challenge for determining the masses of low-mass, long-period planets. Herein, we study this impact by creating Sun-as-a-star observations that encapsulate the granulation variability expected from 3D magnetohydrodynamic simulations. These Sun-as-a-star model observations are in good agreement with empirical observations of the Sun, but may underestimate the total variability relative to the quiet Sun due to the increased magnetic field strength in our models. We find numerous line profile characteristics linearly correlate with the disc-integrated convection-induced velocities. Removing the various correlations with the line bisector, equivalent width, and the V_asy indicator may reduce ~50-60% of the granulation noise in the measured velocities. We also find that simultaneous photometry may be a key diagnostic, as our proxy for photometric brightness also allowed us to remove ~50% of the granulation-induced radial velocity noise. These correlations and granulation-noise mitigations breakdown in the presence of low instrumental resolution and/or increased stellar rotation, as both act to smooth the observed line profile asymmetries.Comment: 18 pages + 15 pages references/appendix, 24 figures, 6 tables, accepted to Ap
    corecore