1,010 research outputs found
An intruder model for verifying termination in security protocols
We formally describe an intruder that is suitable for checking fairness properties of security protocols. The intruder is proved to be equivalent to the Dolev-Yao intruder that respects the resilient communication channels assumption, in the sense that, if a fairness property holds in one of these models, it also holds in the other
A constructive proof of the Heine-Borel covering theorem for formal reals
The continuum is here presented as a formal space by means of a finitary inductive definition. In this setting a constructive proof of the Heine-Borel covering theorem is given
The Audit Logic: Policy Compliance in Distributed Systems
We present a distributed framework where agents can share data along with usage policies. We use an expressive policy language including conditions, obligations and delegation. Our framework also supports the possibility to refine policies. Policies are not enforced a-priori. Instead policy compliance is checked using an a-posteriri auditing approach. Policy compliance is shown by a (logical) proof that the authority can systematically check for validity. Tools for automatically checking and generating proofs are also part of the framework.\u
An Audit Logic for Accountability
We describe and implement a policy language. In our system, agents can
distribute data along with usage policies in a decentralized architecture. Our
language supports the specification of conditions and obligations, and also the
possibility to refine policies. In our framework, the compliance with usage
policies is not actively enforced. However, agents are accountable for their
actions, and may be audited by an authority requiring justifications.Comment: To appear in Proceedings of IEEE Policy 200
Evidence for two-electron processes in the mutual neutralization of O- with O+ and N+ at Subthermal Collision Energies
We have measured total absolute cross sections for the Mutual Neutralization
(MN) of O- with O+/N+. A fine resolution (of about 50 meV) in the kinetic
energy spectra of the product neutral atoms allows unique identification of the
atomic states participating in the mutual neutralization process. Cross
sections and branching ratios have also been calculated down to 1 meV
center-of-mass collision energy for these two systems with a multi-channel
Landau-Zener model and an asymptotic method for the ionic-covalent coupling
matrix elements. The importance of two-electron processes in one-electron
transfer is demonstrated by the dominant contribution of a core-excited
configuration of the nitrogen atom in N+ + O- collisions. This effect is
partially accounted for by introducing configuration mixing in the evaluation
of coupling matrix elements.Comment: 5 pages, 4 figure
Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation
A recent study of soft X-ray absorption in native and hydrogenated coronene
cations, CH , led to the conclusion that additional
hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH)
molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002
(2014)]. The present experiment with collisions between fast (30-200 eV) He
atoms and pyrene (CH, , 6, and 16) and simulations
without reference to the excitation method suggests the opposite. We find that
the absolute carbon-backbone fragmentation cross section does not decrease but
increases with the degree of hydrogenation for pyrene molecules.Comment: 10 pages, 5 figure
- …
