26 research outputs found

    Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    Full text link
    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana

    Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24

    Get PDF
    Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity

    Resilience of cassava ( Manihot esculenta

    No full text

    Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells

    Get PDF
    Abstract Localisation of metabolites in sorghum coleoptiles using Raman hyperspectral imaging analysis was compared in wild type plants and mutants that lack cyanogenic glucosides. This novel method allows high spatial resolution in situ localization by detecting functional groups associated with cyanogenic glucosides using vibrational spectroscopy. Raman hyperspectral imaging revealed that dhurrin was found mainly surrounding epidermal, cortical and vascular tissue, with the greatest amount in cortical tissue. Numerous “hotspots” demonstrated dhurrin to be located within both cell walls and cytoplasm adpressed towards the plasmamembrane and not in the vacuole as previously reported. The high concentration of dhurrin in the outer cortical and epidermal cell layers is consistent with its role in defence against herbivory. This demonstrates the ability of Raman hyperspectral imaging to locate cyanogenic glucosides in intact tissues, avoiding possible perturbations and imprecision that may accompany methods that rely on bulk tissue extraction methods, such as protoplast isolation

    Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum

    No full text
    Using a Sorghum bicolor cultivar and seven wild Sorghum species endemic to Australia as our experimental system, we monitored their different responses to drought by assessing growth and morphological, physiological and biochemical parameters. Drought stress significantly decreased height, biomass, the maximum potential quantum efficiency of photosystem II, photosynthetic rate and relative water content in S. bicolor, while several of the wild species were much more tolerant. Drought significantly increased dhurrin concentration in aboveground tissue in S. bicolor but not in the wild species. Root dhurrin content was unaffected by drought in S. bicolor, in contrast to the varied responses observed in the wild species. Sorghum macrospermum and S. brachypodum maintained relatively high growth and photosynthetic performance under drought, with negligible aboveground dhurrin content. These wild species are promising candidates for sorghum crop improvement

    The resurrection plant Sporobolus stapfianus: An unlikely model for engineering enhanced plant biomass?

    Full text link
    The resurrection grass Sporobolus stapfianus Gandoger can rapidly recover from extended periods of time in the desiccated state (water potential equilibrated to 2% relative humidity) (Gaff and Ellis, Bothalia 11:305–308 1974; Gaff and Loveys, Transactions of the Malaysian Society of Plant Physiology 3:286–287 1993). Physiological studies have been conducted in S. stapfianus to investigate the responses utilised by these desiccation-tolerant plants to cope with severe water-deficit. In a number of instances, more recent gene expression analyses in S. stapfianus have shed light on the molecular and cellular mechanisms mediating these responses. S. stapfianus is a versatile research tool for investigating desiccation-tolerance in vegetative grass tissue, with several useful characteristics for differentiating desiccation-tolerance adaptive genes from the many dehydration-responsive genes present in plants. A number of genes orthologous to those isolated from dehydrating S. stapfianus have been successfully used to enhance drought and salt tolerance in model plants as well as important crop species. In addition to the ability to desiccate and rehydrate successfully, the survival of resurrection plants in regions experiencing short sporadic rainfall events may depend substantially on the ability to tightly down-regulate cell division and cell wall loosening activities with decreasing water availability and then grow rapidly after rainfall while water is plentiful. Hence, an analysis of gene transcripts present in the desiccated tissue of resurrection plants may reveal important growth-related genes. Recent findings support the proposition that, as well as being a versatile model for devising strategies for protecting plants from water-loss, resurrection plants may be a very useful tool for pinpointing genes to target for enhancing growth rate and biomass production

    Sporobolus stapfianus, a model desiccation-tolerant grass

    Full text link
    Sporobolus stapfianus Gandoger, one of ~40 known ‘anabiotic’grass species (i.e. ‘able to regain vital activity from a state of latent life’), is the most versatile tool for research into desiccation tolerance in vegetative grass tissue. Current knowledge on this species is presented, including the features that suit it for investigations into the plant’s ability to survive dehydration of its leaf protoplasm. The main contributors to desiccation tolerance in S. stapfianus leaves appear to be: accumulation during dehydration of protectants of membranes and proteins; mechanisms limiting oxidative damage; a retention of protein synthetic activity in late stages of drying that is linked with changes in gene expression and in the proteomic array; and an ability to retain net synthesis of ATP during drying. S. stapfianus exemplifies an advanced stage of an evolutionary trend in desiccation tolerant plants towards increased importance of the dehydration phase (for induction of tolerance, for synthesis of protectants and for proteomic changes)
    corecore