1,816 research outputs found

    Taxonomic Features and Comparison of the Gut Microbiome from Two Edible Fungus-Farming Termites (Macrotermes falciger, M. natalensis) Harvested in the Vhembe District of Limpopo, South Africa

    Get PDF
    Background Termites are an important food resource for many human populations around the world, and are a good supply of nutrients. The fungus-farming ‘higher’ termite members of Macrotermitinae are also consumed by modern great apes and are implicated as critical dietary resources for early hominins. While the chemical nutritional composition of edible termites is well known, their microbiomes are unexplored in the context of human health. Here we sequenced the V4 region of the 16S rRNA gene of gut microbiota extracted from the whole intestinal tract of two Macrotermes sp. soldiers collected from the Limpopo region of South Africa. Results Major and minor soldier subcastes of M. falciger exhibit consistent differences in taxonomic representation, and are variable in microbial presence and abundance patterns when compared to another edible but less preferred species, M. natalensis. Subcaste differences include alternate patterns in sulfate-reducing bacteria and methanogenic Euryarchaeota abundance, and differences in abundance between Alistipes and Ruminococcaceae. M. falciger minor soldiers and M. natalensissoldiers have similar microbial profiles, likely from close proximity to the termite worker castes, particularly during foraging and fungus garden cultivation. Compared with previously published termite and cockroach gut microbiome data, the taxonomic representation was generally split between termites that directly digest lignocellulose and humic substrates and those that consume a more distilled form of nutrition as with the omnivorous cockroaches and fungus-farming termites. Lastly, to determine if edible termites may point to a shared reservoir for rare bacterial taxa found in the gut microbiome of humans, we focused on the genus Treponema. The majority of Treponemasequences from edible termite gut microbiota most closely relate to species recovered from other termites or from environmental samples, except for one novel OTU strain, which clustered separately with Treponema found in hunter-gatherer human groups. Conclusions Macrotermes consumed by humans display special gut microbial arrangements that are atypical for a lignocellulose digesting invertebrate, but are instead suited to the simplified nutrition in the fungus-farmer diet. Our work brings to light the particular termite microbiome features that should be explored further as avenues in human health, agricultural sustainability, and evolutionary research

    The Influence of Patient-Centeredness on Minority and Socioeconomically-Disadvantaged Patients’ Trust in their Physicians: An Evidence-Based Structural Equation Modeling Investigation

    Full text link
    The purpose of this investigation was to determine the effect of physician patient-centeredness on patient trust across randomly selected groups of patients from an inner city medical practice serving a preponderance of minority and socioeconomically-disadvantaged patients. METHODS: A two-factor multigroup structural equation modeling design was employed, with randomly selected test (N = 300) and cross-validation (N = 300) samples of medical practice patients. Equality constraints were established to test the invariance of effects across groups. The model was compared to its unconstrained counterpart to further test its trustworthiness. An additional 5,000 nonparametric bootstrapped samples for each group were generated to further cross-validate and assess the stability of effect estimates. RESULTS: The model fit well. Physician patient-centeredness significantly influenced patient trust, explaining 82 percent of its variability. When physician patient-centeredness increased by one unit, the predicted value for patient trust increased by 1.043 units (.903 standardized). Patient-centered physician behaviors increased patients’ confidence in and likelihood to recommend their physician. This pattern of effects held across the test and cross-validation groups. The hypothesized model was sustained when compared to its competing counterpart. CONCLUSIONS: Evidence supported the factor and structural validity of the model. This study offers a plausible two-factor model for the measurement and improvement of patient-centeredness, and concomitantly, patient trust in an inner city medical clinic serving minority and socioeconomically-disadvantaged patients. In addition to quality improvement and outcome measurement, the results have implications for improving patient-centeredness, patient trust, the patient–provider relationship, medical education, and reducing health care disparities

    The Soft X-ray Spectrum from NGC 1068 Observed with LETGS on Chandra

    Get PDF
    Using the combined spectral and spatial resolving power of the Low Energy Transmission Grating (LETGS) on board Chandra, we obtain separate spectra from the bright central source of NGC 1068 (Primary region), and from a fainter bright spot 4" to the NE (Secondary region). Both spectra are dominated by line emission from H- and He-like ions of C through S, and from Fe L-shell ions, but also include narrow radiative recombination continua, indicating that most of the soft X-ray emission arises in low-temperature (kT few eV) photoionized plasma. We confirm the conclusions of Kinkhabwala et al. (2002), based on XMM-Newton RGS observations, that the entire nuclear spectrum can be explained by recombination/radiative cascade following photoionization, and radiative decay following photoexcitation, with no evidence for hot, collisionally ionized plasma. In addition, this model also provides an excellent fit to the spectrum of the Secondary region, albeit with radial column densities a factor of three lower, as would be expected given its distance from the source of the ionizing continuum. The remarkable overlap and kinematical agreement of the optical and X-ray line emission, coupled with the need for a distribution of ionization parameter to explain the X-ray spectra, collectively imply the presence of a distribution of densities (over a few orders of magnitude) at each radius in the ionization cone. Relative abundances of all elements are consistent with Solar abundance, except for N, which is 2-3 times Solar. The long wavelength spectrum beyond 30 A is rich of L-shell transitions of Mg, Si, S, and Ar, and M-shell transitions of Fe. The velocity dispersion decreases with increasing ionization parameter, as deduced from these long wavelength lines and the Fe-L shell lines.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Laser assisted charge transfer reactions in slow ion–atom collisions: Coupled dressed quasimolecular‐states approach

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1063/1.447712.Semiclassical coupled dressed quasimolecular states (DQMS) approaches are presented for the nonperturbative treatment of charge transferreactions at low collision velocities and high laser intensities. The DQMS are first obtained via the Floquet theory. The laser assisted collision process can then be treated as the electronic transitions among the DQMS driven by the nuclear motion only. The expansion of the total electronic wave function in a truncated DQMS basis results in a set of coupled a d i a b a t i c equations. The adiabatic DQMS and their associated quasienergies (depending parametrically upon the internuclear separation R) exhibit regions of avoided crossings, where the electronic transition probabilities are large due to strong radial couplings induced by the nuclear movement. By further transforming the a d i a b a t i c DQMS into an appropriate d i a b a t i c DQMS representation, defined via the vanishing of the aforementioned radial couplings, we obtain a new set of coupled d i a b a t i c equations which offer computational advantage. The method is illustrated by a case study of the laser assisted charge exchange process He+ ++H(1s)+ℏω→He+(n=2)+H+, in a two‐state approximation, for the velocity range from 1.5×105 to 2×107 cm/s and for the laser intensity in the range of 0.4 to 4.0 TW/cm2. Results of exact coupled diabatic DQMS calculations are presented along with several approximation calculations, using first order perturbation theory, the Magnus approximation, and the average cross section

    Galactic-Scale Outflow and Supersonic Ram-Pressure Stripping in the Virgo Cluster Galaxy NGC 4388

    Get PDF
    The Hawaii Imaging Fabry-Perot Interferometer (HIFI) on the University of Hawaii 2.2m telescope was used to map the Halpha and [O III] 5007 A emission-line profiles across the entire disk of the edge-on Sb galaxy NGC 4388. We confirm a rich complex of highly ionized gas that extends ~4 kpc above the disk of this galaxy. Low-ionization gas associated with star formation is also present in the disk. Evidence for bar streaming is detected in the disk component and is discussed in a companion paper (Veilleux, Bland-Hawthorn, & Cecil 1999; hereafter VBC). Non-rotational blueshifted velocities of 50 - 250 km/s are measured in the extraplanar gas north-east of the nucleus. The brighter features in this complex tend to have more blueshifted velocities. A redshifted cloud is also detected 2 kpc south-west of the nucleus. The velocity field of the extraplanar gas of NGC 4388 appears to be unaffected by the inferred supersonic (Mach number M ~ 3) motion of this galaxy through the ICM of the Virgo cluster. We argue that this is because the galaxy and the high-|z| gas lie behind a Mach cone with opening angle ~ 80 degrees. The shocked ICM that flows near the galaxy has a velocity of ~ 500 km/s and exerts insufficient ram pressure on the extraplanar gas to perturb its kinematics. We consider several explanations of the velocity field of the extraplanar gas. Velocities, especially blueshifted velocities on the N side of the galaxy, are best explained as a bipolar outflow which is tilted by > 12 degrees from the normal to the disk. The observed offset between the extraplanar gas and the radio structure may be due to buoyancy or refractive bending by density gradients in the halo gas. Velocity substructure in the outflowing gas also suggests an interaction with ambient halo gas.Comment: 29 pages including 5 figures, Latex, requires aaspp4.sty, to appear in ApJ, 520 (July 20, 1999 issue

    The SAMI Galaxy Survey: Gas Streaming and Dynamical M/L in Rotationally Supported Systems

    Get PDF
    Line-of-sight velocities of gas and stars can constrain dark matter (DM) within rotationally supported galaxies if they trace circular orbits extensively. Photometric asymmetries may signify non-circular motions, requiring spectra with dense spatial coverage. Our integral-field spectroscopy of 178 galaxies spanned the mass range of the SAMI Galaxy Survey. We derived circular speed curves (CSCs) of gas and stars from non-parametric Diskfit fits out to r∌2rer\sim2r_e. For 12/14 with measured H I profiles, ionized gas and H I maximum velocities agreed. We fitted mass-follows-light models to 163 galaxies by approximating the radial starlight profile as nested, very flattened mass homeoids viewed as a S\'ersic form. Fitting broad-band SEDs to SDSS images gave median stellar mass/light 1.7 assuming a Kroupa IMF vs. 2.6 dynamically. Two-thirds of the dynamical mass/light measures were consistent with star+remnant IMFs. One-fifth required upscaled starlight to fit, hence comparable mass of unobserved baryons and/or DM distributed similarly across the SAMI aperture that came to dominate motions as the starlight CSC declined rapidly. The rest had mass distributed differently from starlight. Subtracting fits of S\'ersic profiles to 13 VIKING Z-band images revealed residual weak bars. Near the bar PA, we assessed m = 2 streaming velocities, and found deviations usually <30 km/s from the CSC; three showed no deviation. Thus, asymmetries rarely influenced our CSCs despite co-located shock-indicating, emission-line flux ratios in more than 2/3.Comment: 21 pages, 15 figures. Accepted to MNRA

    The SAMI Galaxy Survey: Asymmetry in Gas Kinematics and its links to Stellar Mass and Star Formation

    Full text link
    We study the properties of kinematically disturbed galaxies in the SAMI Galaxy Survey using a quantitative criterion, based on kinemetry (Krajnovic et al.). The approach, similar to the application of kinemetry by Shapiro et al. uses ionised gas kinematics, probed by H{\alpha} emission. By this method 23+/-7% of our 360-galaxy sub-sample of the SAMI Galaxy Survey are kinematically asymmetric. Visual classifications agree with our kinemetric results for 90% of asymmetric and 95% of normal galaxies. We find stellar mass and kinematic asymmetry are inversely correlated and that kinematic asymmetry is both more frequent and stronger in low-mass galaxies. This builds on previous studies that found high fractions of kinematic asymmetry in low mass galaxies using a variety of different methods. Concentration of star forma- tion and kinematic disturbance are found to be correlated, confirming results found in previous work. This effect is stronger for high mass galaxies (log(M*) > 10) and indicates that kinematic disturbance is linked to centrally concentrated star formation. Comparison of the inner (within 0.5Re) and outer H{\alpha} equivalent widths of asymmetric and normal galaxies shows a small but significant increase in inner equivalent width for asymmetric galaxies.Comment: 29 pages, 21 figure

    Hardware in the Loop Testing of an Iodine-Fed Hall Thruster

    Get PDF
    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload,1 providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cm cu and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high delta v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature ( less than100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the vacuum chamber (it is under 10(exp -6) torr at -75 C), making it possible to 'cryopump' the propellant with lower-cost recirculating refrigerant-based systems as opposed to using liquid nitrogen or low temperature gaseous helium cryopanels. In the present paper, we describe testing performed using an iodine-fed 200 W Hall thruster mounted to a thrust stand and operated in conjunction with MSFCs Small Projects Rapid Integration and Test Environment (SPRITE) Portable Hardware In the Loop (PHIL) hardware. This work is performed in support of the iodine satellite (iSAT) project, which aims to fly a 200-W iodine-fed thruster on a 12-U CubeSat. The SPRITE PHIL hardware allows a given vehicle to do a checkout of its avionics algorithm by allowing it to monitor and feed data to simulated sensors and effectors in a digital environment. These data are then used to determine the attitude of the vehicle and a separate computer is used to interpret the data set and visualize it using a 3D graphical interface. The PHIL hardware allows the testing of the vehicles bus by providing 'real' hardware interfaces (in the case of this test a real RS422 bus) and specific components can be modeled to show their interactions with the avionics algorithm (e.g. a thruster model). For the iSAT project the PHIL is used to visualize the operating cycle of the thruster and the subsequent effect this thrusting has on the attitude of the satellite over a given period of time. The test is controlled using software running on an Andrews Space Cortex 160 flight computer. This computer is the current baseline for a full iSAT mission. While the test could be conducted with a lab computer and software, the team chose to exercise the propulsion system with a representative CubeSat-class computer. For purposes of this test, the "flight" software monitored the propulsion and PPU systems, controlled operation of the thruster, and provided thruster state data to the PHIL simulation. Commands to operate the thruster were initiated from an operator's workstation outside the vacuum chamber and passed through the Cortex 160 to exercise portions of the flight avionics. Two custom-designed pieces of electronics hardware have been designed to operate the propellant feed system. One piece of hardware is an auxiliary board that controls a latch valve, proportional flow control valves (PFCVs) and valve heaters as well as measuring pressures, temperatures and PFCV feedback voltage. An onboard FPGA provides a serial link for issuing commands and manages all lower level input-output functions. The other piece of hardware is a power distribution board, which accepts a standard bus voltage input and converts this voltage into all the different current-voltage types required to operate the auxiliary board. These electronics boards are located in the vacuum chamber near the thruster, exposing this hardware to both the vacuum and plasma environments they would encounter during a mission, with these components communicating to the flight computer through an RS-422 interface. The auxiliary board FPGA provides a 28V MOSFET switch circuit with a 20ms pulse to open or close the iodine propellant feed system latch valve. The FPGA provides a pulse width modulation (PWM) signal to a DC/DC boost converter to produce the 12-120V needed for control of the proportional flow control valve. There are eight MOSFET-switched heating circuits in the system. Heaters are 28V and located in the latch valve, PFCV, propellant tank and propellant feed lines. Both the latch valve and PFCV have thermistors built into them for temperature monitoring. There are also seven resistance temperature device (RTD) circuits on the auxiliary board that can be used to measure the propellant tank and feedline temperatures. The signals are conditioned and sent to an analog to digital converter (ADC), which is directly commanded and controlled by the FPGA

    Solar Fusion Cross Sections

    Get PDF
    We review and analyze the available information for nuclear fusion cross sections that are most important for solar energy generation and solar neutrino production. We provide best values for the low-energy cross-section factors and, wherever possible, estimates of the uncertainties. We also describe the most important experiments and calculations that are required in order to improve our knowledge of solar fusion rates.Comment: LaTeX file, 48 pages (figures not included). To appear in Rev. Mod. Phys., 10/98. All authors now listed. Full postscript version with figures available at http://www.sns.ias.edu/~jnb/Papers/Preprints/nuclearfusion.htm

    Prenatal unhealthy diet, insulin-like growth factor 2 gene (IGF2) methylation, and attention deficit hyperactivity disorder symptoms in youth with early-onset conduct problems

    Get PDF
    BACKGROUND: Conduct problems (CP) and attention deficit hyperactivity disorder (ADHD) are often comorbid and have each been linked to ‘unhealthy diet’. Early‐life diet also associates with DNA methylation of the insulin‐like growth factor 2 gene (IGF2), involved in fetal and neural development. We investigated the degree to which prenatal high‐fat and ‐sugar diet might relate to ADHD symptoms via IGF2 DNA methylation for early‐onset persistent (EOP) versus low CP youth. METHODS: Participants were 164 youth with EOP (n = 83) versus low (n = 81) CP drawn from the Avon Longitudinal Study of Parents and Children. We assessed if the interrelationships between high‐fat and ‐sugar diet (prenatal, postnatal), IGF2 methylation (birth and age 7, collected from blood), and ADHD symptoms (age 7–13) differed for EOP versus low CP youth. RESULTS: Prenatal ‘unhealthy diet’ was positively associated with IGF2 methylation at birth for both the EOP and low CP youth. For EOP only: (a) higher IGF2 methylation predicted ADHD symptoms; and (b) prenatal ‘unhealthy diet’ was associated with higher ADHD symptoms indirectly via higher IGF2 methylation. CONCLUSIONS: Preventing ‘unhealthy diet’ in pregnancy might reduce the risk of ADHD symptoms in EOP youth via lower offspring IGF2 methylation
    • 

    corecore