788 research outputs found
Assessing light non-aqueous phase liquids in the subsurface using the soil gas Rn deficit technique: a literature overview of field studies
(222)Radon (Rn) was proposed in the late 1990s as a naturally occurring tracer for light non-aqueous phase liquids (LNAPLs) in the subsurface, due to its preferential partitioning behavior in the non-aqueous phase, resulting in a reduction in Rn activities in areas with LNAPLs in the subsurface compared to unimpacted areas (Rn deficit). The Rn deficit technique emerged as a cost-effective, non-invasive, and sustainable method to rapidly identify and quantify LNAPLs, for the characterization and monitoring of contaminated sites. This paper presents an overview of the technique and its field applications, with a specific focus on the use of the method in the vadose zone based on soil gas Rn measurements. Although various configurations have shown favorable outcomes, limitations persist in the application of the soil gas Rn deficit technique. Deep LNAPL contamination, soil matrix heterogeneity, and temporal variations in Rn emissions pose challenges to quantitative evaluations of LNAPL contamination. Recognizing these factors is crucial for site-specific assessments. This review aims to highlight both the strengths and limitations of the method, providing insights into potential areas for future research while acknowledging the positive outcomes achieved in different configurations over the past decades
N-tree approximation for the largest Lyapunov exponent of a coupled-map lattice
The N-tree approximation scheme, introduced in the context of random directed
polymers, is here applied to the computation of the maximum Lyapunov exponent
in a coupled map lattice. We discuss both an exact implementation for small
tree-depth and a numerical implementation for larger s. We find that the
phase-transition predicted by the mean field approach shifts towards larger
values of the coupling parameter when the depth is increased. We conjecture
that the transition eventually disappears.Comment: RevTeX, 15 pages,5 figure
Using groundwater monitoring wells for rapid application of soil gas radon deficit technique to evaluate residual LNAPL
The application of the 222Radon (Rn) deficit technique using subsurface soil gas probes for the identification and quantification of light non-aqueous phase liquids (LNAPL) has provided positive outcomes in recent years. This study presents an alternative method for applying this technique in the headspace of groundwater monitoring wells. The developed protocol, designed for groundwater monitoring wells with a portion of their screen in the vadose zone, is based on the use of portable equipment that allows rapid measurement of the Rn soil gas activity in the vadose zone close to the water table (i.e., smear zone) where LNAPL is typically expected. The paper first describes the step-by-step procedure to be followed for the application of this method. Then, a preliminary assessment of the potential of the method was carried out at two Italian sites characterized by accidental gasoline and diesel spills into the subsurface from underground storage tanks. Although the number of tests conducted does not allow for definitive conclusions, the results obtained suggest that, from a qualitative point of view, Rn monitoring in the headspace of monitoring wells is a promising, fast, and minimally invasive screening method that could also potentially reduce the costs associated with field data acquisition. This method proves to be suitable for detecting the presence of LNAPL in both the mobile and residual phases with results consistent with the other lines of evidence available at the sites, such as groundwater and soil gas monitoring. Future efforts should be directed toward evaluating the accuracy of this method for a quantitative assessment of residual LNAPL saturations
Transport properties in chaotic and non-chaotic many particles systems
Two deterministic models for Brownian motion are investigated by means of
numerical simulations and kinetic theory arguments. The first model consists of
a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks
acting as a thermal bath. The second is the same except for the shape of the
particles, which is now square. The basic difference of these two systems lies
in the interaction: hard core elastic collisions make the dynamics of the disks
chaotic whereas that of squares is not. Remarkably, this difference is not
reflected in the transport properties of the two systems: simulations show that
the diffusion coefficients, velocity correlations and response functions of the
heavy impurity are in agreement with kinetic theory for both the chaotic and
the non-chaotic model. The relaxation to equilibrium, however, is very
sensitive to the kind of interaction. These observations are used to reconsider
and discuss some issues connected to chaos, statistical mechanics and
diffusion.Comment: 23 pgs with 8 Figure
Brownian motion and diffusion: from stochastic processes to chaos and beyond
One century after Einstein's work, Brownian Motion still remains both a
fundamental open issue and a continous source of inspiration for many areas of
natural sciences. We first present a discussion about stochastic and
deterministic approaches proposed in the literature to model the Brownian
Motion and more general diffusive behaviours. Then, we focus on the problems
concerning the determination of the microscopic nature of diffusion by means of
data analysis. Finally, we discuss the general conditions required for the
onset of large scale diffusive motion.Comment: RevTeX-4, 11 pages, 5 ps-figures. Chaos special issue "100 Years of
Brownian Motion
Thermodynamic formalism for the Lorentz gas with open boundaries in dimensions
A Lorentz gas may be defined as a system of fixed dispersing scatterers, with
a single light particle moving among these and making specular collisions on
encounters with the scatterers. For a dilute Lorentz gas with open boundaries
in dimensions we relate the thermodynamic formalism to a random flight
problem. Using this representation we analytically calculate the central
quantity within this formalism, the topological pressure, as a function of
system size and a temperature-like parameter \ba. The topological pressure is
given as the sum of the topological pressure for the closed system and a
diffusion term with a \ba-dependent diffusion coefficient. From the
topological pressure we obtain the Kolmogorov-Sinai entropy on the repeller,
the topological entropy, and the partial information dimension.Comment: 7 pages, 5 figure
Diffusion, super-diffusion and coalescence from single step
From the exact single step evolution equation of the two-point correlation
function of a particle distribution subjected to a stochastic displacement
field \bu(\bx), we derive different dynamical regimes when \bu(\bx) is
iterated to build a velocity field. First we show that spatially uncorrelated
fields \bu(\bx) lead to both standard and anomalous diffusion equation. When
the field \bu(\bx) is spatially correlated each particle performs a simple
free Brownian motion, but the trajectories of different particles result to be
mutually correlated. The two-point statistical properties of the field
\bu(\bx) induce two-point spatial correlations in the particle distribution
satisfying a simple but non-trivial diffusion-like equation. These
displacement-displacement correlations lead the system to three possible
regimes: coalescence, simple clustering and a combination of the two. The
existence of these different regimes, in the one-dimensional system, is shown
through computer simulations and a simple theoretical argument.Comment: RevTeX (iopstyle) 19 pages, 5 eps-figure
Transition to Stochastic Synchronization in Spatially Extended Systems
Spatially extended dynamical systems, namely coupled map lattices, driven by
additive spatio-temporal noise are shown to exhibit stochastic synchronization.
In analogy with low-dymensional systems, synchronization can be achieved only
if the maximum Lyapunov exponent becomes negative for sufficiently large noise
amplitude. Moreover, noise can suppress also the non-linear mechanism of
information propagation, that may be present in the spatially extended system.
A first example of phase transition is observed when both the linear and the
non-linear mechanisms of information production disappear at the same critical
value of the noise amplitude. The corresponding critical properties can be
hardly identified numerically, but some general argument suggests that they
could be ascribed to the Kardar-Parisi-Zhang universality class. Conversely,
when the non-linear mechanism prevails on the linear one, another type of phase
transition to stochastic synchronization occurs. This one is shown to belong to
the universality class of directed percolation.Comment: 21 pages, Latex - 14 EPS Figs - To appear on Physical Review
Metabolomics Fingerprint Predicts Risk of Death in Dilated Cardiomyopathy and Heart Failure
BACKGROUND: Heart failure (HF) is a leading cause of morbidity and mortality worldwide. Metabolomics may help refine risk assessment and potentially guide HF management, but dedicated studies are few. This study aims at stratifying the long-term risk of death in a cohort of patients affected by HF due to dilated cardiomyopathy (DCM) using serum metabolomics via nuclear magnetic resonance (NMR) spectroscopy. METHODS: A cohort of 106 patients with HF due to DCM, diagnosed and monitored between 1982 and 2011, were consecutively enrolled between 2010 and 2012, and a serum sample was collected from each participant. Each patient underwent half-yearly clinical assessments, and survival status at the last follow-up visit in 2019 was recorded. The NMR serum metabolomic profiles were retrospectively analyzed to evaluate the patient's risk of death. Overall, 26 patients died during the 8-years of the study. RESULTS: The metabolomic fingerprint at enrollment was powerful in discriminating patients who died (HR 5.71, p = 0.00002), even when adjusted for potential covariates. The outcome prediction of metabolomics surpassed that of N-terminal pro b-type natriuretic peptide (NT-proBNP) (HR 2.97, p = 0.005). Metabolomic fingerprinting was able to sub-stratify the risk of death in patients with both preserved/mid-range and reduced ejection fraction [hazard ratio (HR) 3.46, p = 0.03; HR 6.01, p = 0.004, respectively]. Metabolomics and left ventricular ejection fraction (LVEF), combined in a score, proved to be synergistic in predicting survival (HR 8.09, p = 0.0000004). CONCLUSIONS: Metabolomic analysis via NMR enables fast and reproducible characterization of the serum metabolic fingerprint associated with poor prognosis in the HF setting. Our data suggest the importance of integrating several risk parameters to early identify HF patients at high-risk of poor outcomes
- …