7 research outputs found

    Profile and reproductive roles of seminal plasma melatonin of boar ejaculates used in artificial insemination programs

    Get PDF
    Melatonin (MLT) is present in seminal plasma (SP) of mammalian species, including pigs, and it is credited with antioxidant properties. This study aims to identify the sources of variation and the role of boar SP MLT on sperm quality and functionality and in vivo fertilizing ability of liquid-stored semen doses used in AI programs. The SP MLT was measured using an ELISA kit in a total of 219 ejaculates collected from 76 boars, and reproductive records of 5,318 AI sows were recorded. Sperm quality was assessed according to motility (computer-aided sperm analysis) and viability (cytometry evaluation). Sperm functionality was assessed according to the cytometric determination of intracellular H2O2 generation, total and mitochondrial O2- production, and lipid peroxidation in liquid AI semen samples stored at 17°C over 144 h. The concentration of SP MLT differed among seasons (P < 0.01) and day length periods (P < 0.001) of the year, demonstrating that the ejaculates collected during the increasing day length period (9.80 ± 1.38 pg/mL, range: 2.75–21.94) had lower SP MLT concentrations than those collected during the decreasing day length period (16.32 ± 1.67 pg/mL, range: 5.02–35.61). The SP MLT also differed (P < 0.001) among boars, among ejaculates within boar, and among portions within the ejaculate, demonstrating that SP from the first 10 mL of sperm-rich ejaculate fraction (SRF) exhibited lower MLT concentrations than post-SRF. The SP MLT was negatively related (P < 0.001) to mitochondrial O2- production in viable sperm. The SP MLT did not differ among AI boars (n = 14) hierarchically grouped according to high and low fertility outcomes. In conclusion, SP MLT concentration in AI boars varies depending on the season of ejaculate collection and differs among boars, ejaculates within boar, and portions within ejaculate. The SP MLT may act at the mitochondrial level of sperm by reducing the generation of O2-. However, this antioxidant role of SP MLT was not reflected in sperm quality or in vivo fertility outcomes of AI semen doses

    Repeated superovulation using a simplified FSH/eCG treatment for in vivo embryo production in sheep

    No full text
     This study investigated the efficacy of a simplified repeated superovulation treatment (eCG plus FSH in a single dose, rather than the usual protocol of six decreasing doses of FSH) in the in vivo embryo production in Ojalada donor ewes during the breeding season. In vitro viability after vitrification and warming of embryos recovered from both treatments was also assessed. In addition, the study examined the effects of the concentration of anti-eCG antibodies before each eCG/FSH treatment on in vivo embryo production. Thirty-eight females at the end of their reproductive lives were given the decreasing (n = 19) or simplified (n = 19) superovulatory treatment up to three times at intervals of >= 50 d. The onset of estrus was 5 h earlier (P < 0.05) among ewes that received the eCG/FSH protocol (25.2 +/- 0.80 h) than, it was among those that received the decreasing superovulatory treatment (30.1 +/- 1.0 h), but the two treatments did not differ significantly in ovulation rates or the number and viability of embryos recovered. Both of the superovulatory protocols were significantly (P < 0.05 to P < 0.01) less effective after the first application. After three superovulatory treatments, the average number of viable embryos per ewe was 14.1 +/- 2.3 and 13.7 +/- 2.5 in the decreasing and simplified protocols, respectively. High anti-eCG antibody concentrations just before the superovulatory treatment with eCG/FSH were associated with a significant decrease (P < 0.05) in the rates of fertilization, viability, and freezability, especially in the second and third recoveries. Repeated superovulatory treatments with eCG/FSH can provide an efficient means of producing high quality embryos in the ewes of endangered breeds at the end of their reproductive lives, although further studies are needed to characterize the response associated with high concentrations of anti-eCG antibodies. (C) 2011 Elsevier Inc. All rights reserved

    Using Micromegas detectors for direct dark matter searches: challenges and perspectives

    No full text
    International audienceGas time projection chambers (TPCs) with Micromegas pixelated readouts are being used in dark matter searches and other rare event searches, due to their potential in terms of low background levels, energy and spatial resolution, gain, and operational stability. Moreover, these detectors can provide precious features,such as topological information, allowing for event directionality and powerful signal-background discrimination. The Micromegas technology of the microbulk type is particularly suited to low-background applications and is being exploited by detectors for CAST and IAXO (solar axions) and TREX-DM (low-mass WIMPs) experiments. Challenges for the future include reducing intrinsic background levels, reaching lower energy detection levels, and technical issues such as robustness of detector, new design choices, novel gas mixtures and operation points, scaling up to larger detector sizes, handling large readout granularity, etc. We report on the status and prospects of the development ongoing in the context of IAXO and TREX-DM experiments, pointing to promising perspectives for the use of Micromegas detectors in directdark matter searche
    corecore