7 research outputs found

    EVALUATION OF RETRIEVED AEROSOL EXTINCTION PROFILES USING AS REFERENCE THE AEROSOL OPTICAL DEPTH DIFFERENCES BETWEEN VARIOUS HEIGHTS

    Get PDF
    Aerosol extinction vertical profiles at Granada (Spain) are calculated with the GRASP (Generalized Retrieval of Aerosol and Surface Properties) code using as input Aerosol Optical Depth (AOD) and sky radiance measurements from AERONET (AEerosol RObotic NETwork) and ceilometer RCS (Range Corrected Signal) profiles, both corresponding to the Granada (Spain) station. This methodology is so called GRASPpac due to the combination of sun/sky photometer and ceilometer on GRASP. In order to evaluate the accuracy of these retrieved extinction profiles at Granada, two more nearby AERONET stations, located at different altitudes, are used. The AOD difference of the three choosen AERONET sun/sky photometers have been used to calculate the Integrated Aerosol Extinction (IAE) at different height layers. These three AERONET sun/sky photometers are used as a reference and compared against the integrated extinction at the same layers from the extinction profiles retrieved by GRASPpac. The differences between AERONET and GRASPpac retrieved IAE values indicate that GRASPpac aerosol extinction profiles are at least within the uncertainty of the sun/sky photometer measurements, but GRASPpac method overestimates the AERONET extinction at low altitudes and underestimates it at high levels. The most accurate and precise retrieved extinction correspond to the intermediate layer with a mean bias error (MBE ± standard deviation) of 0.00 ± 0.01 (0 ± 59%) for 1020 nm, and the worst integrated extinction results were obtained for the upper layers with a MBE of −0.01 ± 0.02 (28 ± 36%) for 1020 nm. In general these MBE values increases for shorter wavelengths. In order to obtain a complete characterization of this bias, the dependence of the obtained differences on the aerosol size and the solar zenith angle, among others, are analysed in detail. Finally, the behaviour of vertically-resolved aerosol extinction at Granada is evaluated using averages of the retrieved profiles from November of 2012 to December of 2017. The highest IAE values are found in Summer with mean values of 0.09 for the lower layers and 0.07 for the upper ones, both at 440 nm wavelength.Andalusia Regional Government (project P12-RNM-2409)“Consejería de Educación” of “Junta de Castilla y León” (project VA100U14)Spanish Ministry of Economy and Competitiveness under the projects, CMT2015-66742-R, CGL2016-81092-R, “Juan de la Cierva-Incorporación” program (FIJCI-2016-30007) and CGL2017-90884-RED

    Seasonal analysis of the atmosphere during five years by using microwave radiometry over a mid-latitude site

    Get PDF
    This work focuses on the analysis of the seasonal cycle of temperature and relative humidity (RH) profiles and integrated water vapor (IWV) obtained from microwave radiometer (MWR) measurements over the mid-latitude city of Granada, southern Spain. For completeness the study, the maximum atmospheric boundary layer height (ABLHmax) is also included. To this end, we have firstly characterized the HATPRO-RPG MWR errors using 55 co-located radiosondes (RS) by means of the mean-bias (biasbar) profile and the standard deviation (SDbias) profile classified under all-weather conditions and cloud-free conditions. This characterization pointed out that temperature from HATPRO-MWR presents a very low biasbar respects RS mostly below 2.0 km agl, ranging from positive to negative values under all-weather conditions (from 1.7 to -0.4 K with SDbias up to 3.0 K). Under cloud-free conditions, the bias was very similar to that found under all-weather conditions (1.8 to -0.4 K) but with smaller SDbias (up to 1.1 K). The same behavior is also seen in this lower part (ground to 2.0 km agl) for RH. Under all-weather conditions, the mean RH bias ranged from 3.0 to -4.0% with SDbias between 10 and 16.3% while under cloud-free conditions the bias ranged from 2.0 to -0.4% with SDbias from 0.5 to 13.3%. Above 2.0 km agl, the SDbias error increases considerably up to 4 km agl (up to -20%), and then decreases slightly above 7.0 km agl (up to -5%). In addition, IWV values from MWR were also compared with the values obtained from the integration of RS profiles, showing a better linear fit under cloud-free conditions (R2 = 0.96) than under all-weather conditions (R2 = 0.82). The mean bias under cloud-free conditions was -0.80 kg/m2 while for all-weather conditions it was -1.25 kg/m2. Thus, the SDbiasfor all the statistics (temperature, RH and IWV) of the comparison between MWR and RS presented higher values for all-weather conditions than for cloud-free conditions ones. It points out that the presence of clouds is a key factor to take into account when MWR products are used. The second part of this work is devoted to a seasonal variability analysis over five years, leading us to characterize thermodynamically the troposphere over our site. This city atmosphere presents a clear seasonal cycle where temperature, ABLHmax and IWV increase from winter to summer and decrease in autumn, meanwhile RH decreases along the warmer seasons. This city presents cold winters (mean daily maximum temperature: 10.6 ± 1.1 °C) and dry/hot summers (mean daily maximum temperature of 28.8 ± 0.9 °C and mean daily maximum of surface RH up to 55.0 ± 6.0%) at surface (680 m asl). Moreover, considering temporal trends, our study pointed out that only temperature and RH showed a linear increase in winters with a mean-rate of (0.5 ± 0.1) °C/year and (3.4 ± 1.7) %/year, respectively, from ground to 2.0 km agl, meanwhile IWV presented a linear increase of 1.0 kg·m-2/year in winters, 0.78 kg·m-2/year in summers and a linear decrease in autumns of -0.75 kg·m-2/year.Andalusia Regional Government through project P12-RNM-2409Spanish Ministry of Economy and Competitiveness through projects CGL2013-45410-R, CGL2015-73250-JIN and CGL2016-81092-RJuan de la Cierva grant IJCI-2016-3000

    Microbial lipases and their industrial applications: a comprehensive review

    No full text
    corecore