1,691 research outputs found

    Oxidizing seal for a turbine tip gas path

    Get PDF
    The sealing of the gas path in a gas turbine engine at the blade tips is improved by maintaining a minimum clearance between the rotor blade tips and the gas path seal. This is accomplished by taking advantage of an increase in volume during controlled oxidation of certain intermetallic compounds which have high melting points. The increase in volume closes the clearance subsequent to a rub between the blades and the seal. Thus, these compounds re-form the tip seal surface to assure continued engine efficiency

    Tape casting as an approach to an all-ceramic turbine shroud seal

    Get PDF
    Gas path seals have a one-dimensional variation in material requirement. Tape casting is a method which allows the fabrication of thin ceramic sheets, which may be laminated to accommodate these requirements. Using tape casting, thin sheets of zirconia (0.25 mm) were fabricated. These castings were successfully laminated and fired without bloating or delamination, demonstrating the feasibility of this approach

    Overview of zirconia with respect to gas turbine applications

    Get PDF
    Phase relationships and the mechanical properties of zirconia are examined as well as the thermal conductivity, deformation, diffusion, and chemical reactivity of this refractory material. Observations from the literature particular to plasma-sprayed material and implications for gas turbine engine applications are discussed. The literature review indicates that Mg-PSZ (partially stabilized zirconia) and Ca-PSZ are unsuitable for advanced gas turbine applications; a thorough characterization of the microstructure of plasma-sprayed zirconia is needed. Transformation-toughened zirconia may be suitable for use in monolithic components

    Phenomenological study of the behavior of some silica formers in a high velocity jet fuel burner

    Get PDF
    Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered Si3N4 and polycrystalline MoSi2, were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix

    Latinos (Research Report #115)

    Get PDF
    This first review in this series focused on various racial and ethnic groups in the Gulf of Mexico region explores the experiences of Latinos -- a group that has gained significant local and national attention over the past 20 years as the number of Latinos residing in the area, and in the nation, has drastically increased.https://digitalcommons.lsu.edu/agcenter_researchreports/1001/thumbnail.jp

    Croatians (Research Report #119)

    Get PDF
    This is the fifth in a series of reviews about the experiences of various racial and ethnic groups in the Gulf of Mexico region.This one focuses on the experiences of Croatians. Although relatively small in number, Croatians have had considerable influence in the southeastern United States, particularly in the economic life of southern Louisiana. Commonly known to have transformed and substantially grown the oyster industry, Croatians also have a complex history and culture.https://digitalcommons.lsu.edu/agcenter_researchreports/1002/thumbnail.jp

    Oxygen diffusion in alpha-Al2O3

    Get PDF
    Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets

    Oxidation of Carbon/Carbon through Coating Cracks

    Get PDF
    Reinforced carbon/carbon (RCC) is used to protect the wing leading edge and nose cap of the Space Shuttle Orbiter on re-entry. It is composed of a lay-up of carbon/carbon fabric protected by a SiC conversion coating. Due to the thermal expansion mismatch of the carbon/carbon and the SiC, the SiC cracks on cool-down from the processing temperature. The cracks act as pathways for oxidation of the carbon/carbon. A model for the diffusion controlled oxidation of carbon/carbon through machined slots and cracks is developed and compared to laboratory experiments. A symmetric cylindrical oxidation cavity develops under the slots, confirming diffusion control. Comparison of cross sectional dimensions as a function of oxidation time shows good agreement with the model. A second set of oxidation experiments was done with samples with only the natural craze cracks, using weight loss as an index of oxidation. The agreement of these rates with the model is quite reasona

    Gauge Identities and the Dirac Conjecture

    Full text link
    The gauge symmetries of a general dynamical system can be systematically obtained following either a Hamiltonean or a Lagrangean approach. In the former case, these symmetries are generated, according to Dirac's conjecture, by the first class constraints. In the latter approach such local symmetries are reflected in the existence of so called gauge identities. The connection between the two becomes apparent, if one works with a first order Lagrangean formulation. Our analysis applies to purely first class systems. We show that Dirac's conjecture applies to first class constraints which are generated in a particular iterative way, regardless of the possible existence of bifurcations or multiple zeroes of these constraints. We illustrate these statements in terms of several examples.Comment: 21 page

    Oxidation of Carbon Fibers in a Cracked Ceramic Matrix Composite Modeled as a Function of Temperature

    Get PDF
    The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and oxygen reactions occur. This results in a sharp gradient in oxygen concentration from the edge where it is supplied to the nearest source of carbon, which is where the oxygen is quickly consumed. A moving reaction front is seen in which the outlaying carbon is consumed before the next inner layer of carbon begins to react
    • …
    corecore