31 research outputs found

    Rare X chromosome abnormalities in systemic lupus erythematosus and Sjögren's syndrome

    Get PDF
    Objective: Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE) are related by clinical and serologic manifestations as well as genetic risks. Both diseases are more commonly found in women than in men, at a ratio of ~10 to 1. Common X chromosome aneuploidies, 47,XXY and 47,XXX, are enriched among men and women, respectively, in either disease, suggesting a dose effect on the X chromosome. Methods: We examined cohorts of SS and SLE patients by constructing intensity plots of X chromosome single-nucleotide polymorphism alleles, along with determining the karyotype of selected patients. Results: Among ~2,500 women with SLE, we found 3 patients with a triple mosaic, consisting of 45,X/46,XX/47,XXX. Among ~2,100 women with SS, 1 patient had 45,X/46,XX/47,XXX, with a triplication of the distal p arm of the X chromosome in the 47,XXX cells. Neither the triple mosaic nor the partial triplication was found among the controls. In another SS cohort, we found a mother/daughter pair with partial triplication of this same region of the X chromosome. The triple mosaic occurs in ~1 in 25,000–50,000 live female births, while partial triplications are even rarer. Conclusion: Very rare X chromosome abnormalities are present among patients with either SS or SLE and may inform the location of a gene(s) that mediates an X dose effect, as well as critical cell types in which such an effect is operative. © 2017, American College of Rheumatolog

    Multiplexed Enzyme Activity-Based Probe Display via Hybridization

    No full text
    Emulsions offer the means to miniaturize and parallelize high-throughput screening but require a robust method to localize activity-based fluorescent probes in each droplet. Multiplexing probes in droplets is impractical, though highly desirable for identifying library members that possess very specific activity. Here, we present multiplexed probe immobilization on library beads for emulsion screening. During library bead preparation, we quantitated ∼106 primers per bead by fluorescence in situ hybridization, however emulsion PCR yielded only ∼103 gene copies per bead. We leveraged the unextended bead-bound primers to hybridize complementary probe-oligonucleotide heteroconjugates to the library beads. The probe-hybridized bead libraries were then used to program emulsion in vitro transcription/translation reactions and analyzed by FACS to perform multiplexed activity-based screening of trypsin and chymotrypsin mutant libraries for novel proteolytic specificity. The approach's modularity should permit a high degree of probe multiplexing and appears extensible to other enzyme classes and library types

    Chemoselective Coupling Preserves the Substrate Integrity of Surface-Immobilized Oligonucleotides for Emulsion PCR-Based Gene Library Construction

    No full text
    Combinatorial bead libraries figure prominently in next-generation sequencing and are also important tools for in vitro evolution. The most common methodology for generating such bead libraries, emulsion PCR (emPCR), enzymatically extends bead-immobilized oligonucleotide PCR primers in emulsion droplets containing a single progenitor library member. Primers are almost always immobilized on beads via noncovalent biotin–streptavidin binding. Here, we describe covalent bead functionalization with primers (∼10<sup>6</sup> primers/2.8-μm-diameter bead) via either azide–alkyne click chemistry or Michael addition. The primers are viable polymerase substrates (4–7% bead-immobilized enzymatic extension product yield from one thermal cycle). Carbodiimide-activated carboxylic acid beads only react with oligonucleotides under conditions that promote nonspecific interactions (low salt, low pH, no detergent), comparably immobilizing primers on beads, but yielding no detectable enzymatic extension product. Click-functionalized beads perform satisfactorily in emPCR of a site-saturation mutagenesis library, generating monoclonal templated beads (10<sup>4</sup>–10<sup>5</sup> copies/bead, 1.4-kb amplicons). This simpler, chemical approach to primer immobilization may spur more economical library preparation for high-throughput sequencing and enable more complex surface elaboration for in vitro evolution

    DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis

    No full text
    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the “structure elucidation problem”: the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS’s utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10<sup>4</sup> molecules/bead and sequencing allowed for elucidation of each compound’s synthetic history. We applied DESPS to the combinatorial synthesis of a 75 645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries

    A cell based screening approach for identifying protein degradation regulators

    No full text
    <p>Cellular transitions are achieved by the concerted actions of regulated degradation pathways. In the case of the cell cycle, ubiquitin mediated degradation ensures unidirectional transition from one phase to another. For instance, turnover of the cell cycle regulator cyclin B1 occurs after metaphase to induce mitotic exit. To better understand pathways controlling cyclin B1 turnover, the N-terminal domain of cyclin B1 was fused to luciferase to generate an N-cyclin B1-luciferase protein that can be used as a reporter for protein turnover. Prior studies demonstrated that cell-based screens using this reporter identified small molecules inhibiting the ubiquitin ligase controlling cyclin B1-turnover. Our group adapted this approach for the G2-M regulator Wee1 where a Wee1-luciferase construct was used to identify selective small molecules inhibiting an upstream kinase that controls Wee1 turnover. In the present study we present a screening approach where cell cycle regulators are fused to luciferase and overexpressed with cDNAs to identify specific regulators of protein turnover. We overexpressed approximately 14,000 cDNAs with the N-cyclin B1-luciferase fusion protein and determined its steady-state level relative to other luciferase fusion proteins. We identified the known APC/C regulator Cdh1 and the F-box protein Fbxl15 as specific modulators of N-cyclin B1-luciferase steady-state levels and turnover. Collectively, our studies suggest that analyzing the steady-state levels of luciferase fusion proteins in parallel facilitates identification of specific regulators of protein turnover.</p
    corecore