82 research outputs found

    PERK Regulates the Proliferation and Development of Insulin-Secreting Beta-Cell Tumors in the Endocrine Pancreas of Mice

    Get PDF
    PERK eIF2alpha kinase is required for the proliferation of the insulin-secreting beta- cells as well as insulin synthesis and secretion. In addition, PERK signaling has been found to be an important factor in determining growth and angiogenesis of specific types of tumors, and was attributed to PERK-dependent regulation of the hypoxic stress response. In this report we examine the role of PERK in regulating proliferation and angiogenesis of transformed beta-cells in the development of insulinomas.The SV40 Large T-antigen (Tag) was genetically introduced into the insulin secreting beta-cells of Perk KO mice under the control of an inducible promoter. Tumor growth and the related parameters of cell proliferation were measured. In late stage insulinomas the degree of vascularity was determined.The formation and growth of insulinomas in Perk-deficient mice was dramatically ablated with much fewer tumors, which averaged 38-fold smaller than seen in wild-type control mice. Beta-cell proliferation was ablated in Perk-deficient mice associated with reduced tumor growth. In the small number of large encapsulated insulinomas that developed in Perk-deficient mice, we found a dramatic reduction in tumor vascularity compared to similar sized insulinomas in wild-type mice. Although insulinoma growth in Perk-deficient mice was largely impaired, beta-cell mass was increased sufficiently by T-antigen induction to rescue the hypoinsulinemia and diabetes in these mice.We conclude that PERK has two roles in the development of beta-cell insulinomas, first to support rapid cell proliferation during the initial transition to islet hyperplasia and later to promote angiogenesis during the progression to late-stage encapsulated tumors

    Glucose dehydrogenase is required for normal sperm storage and utilization in female Drosophila melanogaster

    Get PDF
    Female sperm storage is a key factor for reproductive success in a variety of organisms, including Drosophila melanogaster. The spermathecae, one of the Drosophila sperm storage organs, has been suggested as a long-term storage organ because its secreted substances may enhance the quality of sperm storage. Glucose dehydrogenase (GLD) is widely expressed and secreted in the spermathecal ducts among species of the genus Drosophila. This highly conserved expression pattern suggests that this enzyme might have an important role in female fertility. Here, we examine the function of GLD in sperm storage and utilization using Gld-null mutant females. The absence of GLD reduced the amount of sperm stored in the spermathecae and led to a highly asymmetrical sperm distribution in the two spermathecal capsules of the mutant females. The storage defect was especially severe when the mutant females were crossed to a Gld-mutant male that had previously mated a few hours before the experimental cross. Under this mating condition, the mutant females stored in the spermathecae only one-third of the sperm amount of the wild-type control females. In addition, the mutant females used stored sperm at a slower rate over a longer period compared with wild-type females. Thus, our results indicate that GLD facilitates both sperm uptake and release through the spermathecal ducts

    Acute ablation of PERK results in ER dysfunctions followed by reduced insulin secretion and cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A deficiency in <it>Perk </it>(EIF2AK3) causes multiple neonatal defects in humans known as the Wolcott Rallison syndrome. <it>Perk KO </it>mice exhibit the same array of defects including permanent neonatal diabetes (PND). PND in mice was previously shown by us to be due to a decrease in beta cell proliferation and insulin secretion. The aim of this study was to determine if acute ablation of PERK in the 832/13 beta cells recapitulates these defects and to identify the primary molecular basis for beta cell dysfunction.</p> <p>Results</p> <p>The INS1 832/13 transformed rat beta cell line was transduced with a dominant-negative <it>Perk </it>transgene via an adenoviral vector. <it>AdDNPerk</it>-832/13 beta cells exhibited reduced expression of <it>insulin </it>and <it>MafA </it>mRNAs, reduced insulin secretion, and reduced cell proliferation. Although proinsulin content was reduced in <it>AdDNPerk</it>-832/13 beta cells, proinsulin was abnormally retained in the endoplasmic reticulum. A temporal study of the acute ablation of <it>Perk </it>revealed that the earliest defect seen was induced expression of two ER chaperone proteins, GRP78/BiP and ERp72. The oxidized states of ERp72 and ERp57 were also increased suggesting an imbalance in the redox state of the ER.</p> <p>Conclusion</p> <p>Acute ablation of Perk in INS 832/13 beta cells exhibited all of the major defects seen in <it>Perk KO </it>mice and revealed abnormal expression and redox state of key ER chaperone proteins. Dysregulation of ER chaperone/folding enzymes ERp72 and GRP78/BiP occurred early after ablation of PERK function suggesting that changes in ER secretory functions may give rise to the other defects including reduced insulin gene expression, secretion, and cell proliferation.</p

    PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis

    Get PDF
    SummaryMutations in PERK (EIF2AK3) result in permanent neonatal diabetes as well as several other anomalies that underlie the human Wolcott-Rallison syndrome, and these anomalies are mirrored in Perk knockout mice. To identify the cause of diabetes in PERK-deficient mice, we generated a series of tissue- and cell-specific knockouts of the Perk gene and performed a developmental analysis of the progression to overt diabetes. We discovered that PERK is specifically required in the insulin-secreting β cells during the fetal and early neonatal period as a prerequisite for postnatal glucose homeostasis. However, PERK expression in β cells is not required at the adult stage to maintain β cell functions and glucose homeostasis. We show that PERK-deficient mice exhibit severe defects in fetal/neonatal β cell proliferation and differentiation, resulting in low β cell mass, defects in proinsulin trafficking, and abrogation of insulin secretion that culminate in permanent neonatal diabetes

    Seeing spots: quantifying mother-offspring similarity and assessing fitness consequences of coat pattern traits in a wild population of giraffes (Giraffa camelopardalis)

    Get PDF
    Polymorphic phenotypes of mammalian coat coloration have been important to the study of genetics and evolution, but less is known about the inheritance and fitness consequences of individual variation in complex coat pattern traits such as spots and stripes. Giraffe coat markings are highly complex and variable and it has been hypothesized that variation in coat patterns most likely affects fitness by camouflaging neonates against visually hunting predators. We quantified complex coat pattern traits of wild Masai giraffes using image analysis software, determined the similarity of spot pattern traits between mother and offspring, and assessed whether variation in spot pattern traits was related to fitness as measured by juvenile survival. The methods we described could comprise a framework for objective quantification of complex mammal coat pattern traits based on photographic coat pattern data. We demonstrated that some characteristics of giraffe coat spot shape were likely to be heritable, as measured by mother-offspring regression. We found significant variation in juvenile survival among phenotypic groups of neonates defined by multivariate clustering based on spot trait measurement variables. We also found significant variation in neonatal survival associated with spot size and shape covariates. Larger spots (smaller number of spots) and irregularly shaped or rounder spots (smaller aspect ratio) were correlated with increased survival. These findings will inform investigations into developmental and genetic architecture of complex mammal coat patterns and their adaptive value

    PERK eIF2 alpha kinase is required to regulate the viability of the exocrine pancreas in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deficiency of the PERK eIF2α kinase in humans and mice results in postnatal exocrine pancreatic atrophy as well as severe growth and metabolic anomalies in other organs and tissues. To determine if the exocrine pancreatic atrophy is due to a cell-autonomous defect, the <it>Perk </it>gene was specifically ablated in acinar cells of the exocrine pancreas in mice.</p> <p>Results</p> <p>We show that expression of PERK in the acinar cells is required to maintain their viability but is not required for normal protein synthesis and secretion. Exocrine pancreatic atrophy in PERK-deficient mice was previously attributed to uncontrolled ER-stress followed by apoptotic cell death based on studies in cultured fibroblasts. However, we have found no evidence for perturbations in the endoplasmic reticulum or ER-stress and show that acinar cells succumb to a non-apoptotic form of cell death, oncosis, which is associated with a pronounced inflammatory response and induction of the pancreatitis stress response genes. We also show that mice carrying a knockout mutation of PERK's downstream target, ATF4, exhibit pancreatic deficiency caused by developmental defects and that mice ablated for ATF4's transcriptional target CHOP have a normal exocrine pancreas.</p> <p>Conclusion</p> <p>We conclude that PERK modulates secretory capacity of the exocrine pancreas by regulating cell viability of acinar cells.</p

    Expansion and evolution of insect GMC oxidoreductases

    Get PDF
    BackgroundThe GMC oxidoreductases comprise a large family of diverse FAD enzymes that share a homologous backbone. The relationship and origin of the GMC oxidoreductase genes, however, was unknown. Recent sequencing of entire genomes has allowed for the evolutionary analysis of the GMC oxidoreductase family. ResultsAlthough genes that encode enzyme families are rarely linked in higher eukaryotes, we discovered that the majority of the GMC oxidoreductase genes in the fruit fly (D. melanogaster), mosquito (A. gambiae), honeybee (A. mellifera), and flour beetle (T. castaneum) are located in a highly conserved cluster contained within a large intron of the flotillin-2 (Flo-2) gene. In contrast, the genomes of vertebrates and the nematode C. elegans contain few GMC genes and lack a GMC cluster, suggesting that the GMC cluster and the function of its resident genes are unique to insects or arthropods. We found that the development patterns of expression of the GMC cluster genes are highly complex. Among the GMC oxidoreductases located outside of the GMC gene cluster, the identities of two related enzymes, glucose dehydrogenase (GLD) and glucose oxidase (GOX), are known, and they play major roles in development and immunity. We have discovered that several additional GLD and GOX homologues exist in insects but are remotely similar to fungal GOX. ConclusionWe speculate that the GMC oxidoreductase cluster has been conserved to coordinately regulate these genes for a common developmental or physiological function related to ecdysteroid metabolism. Furthermore, we propose that the GMC gene cluster may be the birthplace of the insect GMC oxidoreductase genes. Through tandem duplication and divergence within the cluster, new GMC genes evolved. Some of the GMC genes have been retained in the cluster for hundreds of millions of years while others might have transposed to other regions of the genome. Consistent with this hypothesis, our analysis indicates that insect GOX and GLD arose from a different ancestral GMC gene than that of fungal GOX

    PERK eIF2α kinase regulates neonatal growth by controlling the expression of circulating insulin-like growth factor-I derived from the liver

    Get PDF
    Humans afflicted with the Wolcott-Rallison syndrome and mice deficient for PERK (pancreatic endoplasmic reticulum eIF2α kinase) show severe postnatal growth retardation. In mice, growth retardation in Perk−/− mutants is manifested within the first few days of neonatal development. Growth parameters of Perk−/− mice, including comparison of body weight to length and organ weights, are consistent with proportional dwarfism. Tibia growth plates exhibited a reduction in proliferative and hypertrophic chondrocytes underlying the longitudinal growth retardation. Neonatal Perk−/− deficient mice show a 75% reduction in liver IGF-I mRNA and serum IGF-I within the first week, whereas the expression of IGF-I mRNA in most other tissues is normal. Injections of IGF-I partially reversed the growth retardation of the Perk−/− mice, whereas GH had no effect. Transgenic rescue of PERK activity in the insulin- secreting β-cells of the Perk−/− mice reversed the juvenile but not the neonatal growth retardation. We provide evidence that circulating IGF-I is derived from neonatal liver but is independent of GH at this stage. We propose that PERK is required to regulate the expression of IGF-I in the liver during the neonatal period, when IGF-I expression is GH-independent, and that the lack of this regulation results in severe neonatal growth retardation
    corecore