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Abstract
Background: The GMC oxidoreductases comprise a large family of diverse FAD enzymes that
share a homologous backbone. The relationship and origin of the GMC oxidoreductase genes,
however, was unknown. Recent sequencing of entire genomes has allowed for the evolutionary
analysis of the GMC oxidoreductase family.

Results: Although genes that encode enzyme families are rarely linked in higher eukaryotes, we
discovered that the majority of the GMC oxidoreductase genes in the fruit fly (D. melanogaster),
mosquito (A. gambiae), honeybee (A. mellifera), and flour beetle (T. castaneum) are located in a highly
conserved cluster contained within a large intron of the flotillin-2 (Flo-2) gene. In contrast, the
genomes of vertebrates and the nematode C. elegans contain few GMC genes and lack a GMC
cluster, suggesting that the GMC cluster and the function of its resident genes are unique to insects
or arthropods. We found that the development patterns of expression of the GMC cluster genes
are highly complex. Among the GMC oxidoreductases located outside of the GMC gene cluster,
the identities of two related enzymes, glucose dehydrogenase (GLD) and glucose oxidase (GOX),
are known, and they play major roles in development and immunity. We have discovered that
several additional GLD and GOX homologues exist in insects but are remotely similar to fungal
GOX.

Conclusion: We speculate that the GMC oxidoreductase cluster has been conserved to
coordinately regulate these genes for a common developmental or physiological function related
to ecdysteroid metabolism. Furthermore, we propose that the GMC gene cluster may be the
birthplace of the insect GMC oxidoreductase genes. Through tandem duplication and divergence
within the cluster, new GMC genes evolved. Some of the GMC genes have been retained in the
cluster for hundreds of millions of years while others might have transposed to other regions of
the genome. Consistent with this hypothesis, our analysis indicates that insect GOX and GLD
arose from a different ancestral GMC gene than that of fungal GOX.
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Background
Underlying biosynthesis and metabolism in all organisms
is a large array of enzymes that catalyze a vast number of
chemical reactions. Among these, oxidation-reduction
reactions are the most prevalent and fundamental. Oxido-
reductases typically entail electron transfer between the
primary substrate and a co-factor such as NAD(P), FAD, or
a cytochrome. Although similar structural domains are
found in these enzymes, their primary amino acid
sequences are generally not similar and therefore it is dif-
ficult to discern if they share a common evolutionary
ancestor. An exceptional group in this regard is the family
of GMC-FAD oxidoreductases [1] that shares an evolu-
tionary conserved ca. 30 amino acid sequence comprising
a beta-alpha-beta motif of the ADP-binding subdomain of
FAD. Moreover, the GMC oxidoreductases contain five
other blocks of conserved sequences dispersed through-
out their primary sequence [2], supporting the hypothesis
that they are evolutionarily homologous throughout.

Since the discovery of the GMC oxidoreductase family,
several new enzymes have been added to this family [3,4].
Some of the unusual additions are hydroxynitrile lyase,
which does not appear to catalyze an oxidation-reduction
reaction [5], and celliobiose dehydrogenase, which con-
tains an additional heme domain, not present in the
archetypal GMC oxidoreductases [3]. In this study, we
have searched the newly sequenced genomes of prokaryo-
tic and eukaryotic organisms and have discovered a large
number of previously unidentified GMC oxidoreductase
genes in insects. Surprisingly, most of these newly identi-
fied genes are clustered in a conserved order and orienta-
tion, and are located in a large intron of the flotillin-2 gene
in four distantly related insect species: Drosophila mela-
nogaster, Anopheles gambiae, Apis mellifera, and Tribolium
castaneum. We speculate that this insect GMC gene cluster
may function in ecdysteroid metabolism. In addition, we
report that the two glucose-metabolizing GMC enzymes
in insects, GOX and GLD, are evolutionarily distinct from
GOX in fungi and likely arose from a different ancestral
GMC gene.

Results and discussion
The identification of a GMC oxidoreductase gene cluster 
in Drosophila
Prior to the sequence determination of the D. melanogaster
genome, glucose dehydrogenase (Gld) located on the 3rd

chromosome (3R, 84D1-2) was the only known GMC oxi-
doreductase family member in Drosophila. Upon com-
pletion of the genome sequencing [6], we surveyed the
entire genome for genes that belong to the GMC family
based on the amino acid sequence characteristics. In addi-
tion to Gld, two GMC homologues, NinaG [7] and
CG6142, are located on the 3rd chromosome (3R, 97A1
and 86E7, respectively) and 12 other GMC homologues

are located on the X-chromosome (12F5-13A1). These
genes had been tentatively annotated as putative homo-
logues of either choline dehydrogenase or Gld by the Ber-
keley Drosophila Genome Project [8].

However, the functions of the 12 GMC genes located on
the X-chromosome are unknown except CG9504, which
was recently identified by H. Takeuchi and coworkers as
ecdysone oxidase (EO) [9]. Although these twelve genes
share sequence similarity with choline dehydrogenase
and GLD, their sequence similarity to these two enzymes
is not significantly greater than to any other GMC oxidore-
ductases. This indicates that they are unlikely to encode
either choline dehydrogenase or GLD, arguing against the
initial annotation of these genes by the Berkeley Dro-
sophila Genome Project. Moreover, choline dehydroge-
nase has not been reported in insects and we have not
been able detect this enzyme in Drosophila by biochemi-
cal assays (D. R. Cavener, unpublished data).

The twelve X-chromosome GMC genes in D. melanogaster
are in the same transcriptional orientation comprising a
gene cluster encompassing 80.9 kb without any interrup-
tions by non-GMC genes, with the exception of CG14406
located between CG9509 and CG12398. Pairwise com-
parisons of amino acid sequences of these genes revealed
a varied degree of similarity to each other (27–69% amino
acid identity). Surprisingly, this GMC cluster is entirely
within the second intron of flotillin-2 (Flo-2), a non-GMC
gene that is transcribed in the opposite direction to that of
the GMC genes (Figures 1 and 2). The Flo-2 intron con-
taining the GMC cluster is large, spanning over 83.2 kb,
and exclusively contains the GMC gene cluster and
CG14406. The first exon (45 bp) and most of the second

The predicted gene structure of Flo-2Figure 1
The predicted gene structure of Flo-2. D. melanogaster 
Flo-2 structure is from GenBank. Coding regions are shown 
in black, and non-coding in white. In the other species, only 
predicted coding regions are shown. All genes are in scale, 
except the large intron that contains GMC cluster. The genes 
are positioned to align at the start codon and at the begin-
ning of the exon immediately 5' of GMC cluster. The coding 
sequence information of this gene can be found in Additional 
File 4.
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exon (146 bp) of Flo-2 are non-coding, with only the first
16 amino acid residues of Flo-2 encoded by the 3' end of
the second exon (Figure 1). The genome of D. pseudoob-
scura has recently been sequenced [10], and we found that
D. pseudoobscura has an orthologous GMC cluster with an
identical gene composition and order to that of D. mela-
nogaster (data not shown).

Evolutionary conservation of the GMC cluster in insect 
genomes
To examine the evolution of the GMC genes in insects, we
searched for the GMC homologues in three other insect
species including Anopheles gambiae, Apis mellifera, and Tri-
bolium castaneum for which entire genomic sequences
were available [11-13]. We performed TBLASTN against
each genome using the D. melanogaster GLD protein
sequence and identified multiple GMC genes in all species
(Table 1). We discovered that 10–12 GMC genes in A.
gambiae, A. mellifera, and T. castaneum were clustered in a
tandem array as seen in Drosophila. In A. mellifera, and T.
castaneum, more GMC genes exist outside the gene cluster,
as compared to D. melanogaster and A. gambiae (Table 1).

In order to identify orthologs of the Drosophila GMC
genes in the other three insect genomes, all amino acid
sequences of the newly discovered GMC genes were
aligned together with several outgroup GMC enzymes,
including choline dehydrogenase from E. coli, C. elegans,

and humans, two NinaG genes from Drosophila and bee-
tles, and fungal glucose oxidase. A considerable propor-
tion of the alignment contained gaps or highly diverged
residues due to the long divergence time among these dis-
tantly related species. However, the average sequence dis-
tance across all pairwise comparisons (0.63) was below
the saturated distance (~0.94) estimated from the average
amino acid frequencies across all sequences analyzed (see
Additional File 1 for the sequence alignment).

Next we reconstructed a neighbor-joining tree with Pois-
son correction for sequence distances in which ortholo-
gous genes from different species are expected to cluster
together [14,15]. The results from our phylogenetic anal-
ysis provide reliable evidence on identifying GMC ortho-
logues (Figure 3). The tree showed 13 major

Table 1: The predicted number of GMC genes in the insect 
genomes

Species Inside 
cluster

Outside 
cluster

Total (GLD/GOX related)a

D. melanogaster 12 3 15 (1)
A. gambiae 12 3 15 (1)
A. mellifera 10 8 18 (4)

T. castaneum 12 11 23 (3)

aThe number of GLD/GOX-related genes is included in the other 
columns.

Comparison of the structure of the GMC cluster in D. melanogaster, A. gambiae, A. mellifera, T. castaneumFigure 2
Comparison of the structure of the GMC cluster in D. melanogaster, A. gambiae, A. mellifera, T. castaneum. The 
GMC cluster is located within the Flo-2 gene in opposite transcriptional orientation in all species. The coding regions of Flo-2, 
adjacent to the cluster, are shown in solid black. The transcriptional orientation of each GMC gene is shown by an open arrow 
that also shows the position of each gene. Only for A. gambiae GMCβ4, the gene structure is shown to indicate alternative 
splicing (also see Figure 5). The other genes may or may not contain introns. The highly conserved gene subfamilies, GMCα, δ, 
ε, ζ, and θ are indicated by dotted lines. Positions of non-GMC genes present in D. melanogaster and T. castaneum are indicated 
by vertical arrows. The sequences of these non-GMC genes are not homologous to each other. Figures are not drawn to scale.
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monophyletic clades (excluding outgroup sequences),
and sequences clustered in each clade were classified as a
subfamily. Alignments within subfamilies were less
ambiguous with relatively lower average pairwise
sequence differences (Additional Files 1 and 2). Results
from the bootstrap re-sampling analysis indicated that the
clustering of these subfamilies is reliable. While the boot-
strap scores supporting three subfamilies (GMC β, ι, and
κ) are 78, 87, and 81, respectively, all other subfamilies
were supported by a high bootstrap value (= 94) (Figure
3). For genes that reside within the cluster, the identified
subfamilies were designated with different Greek letters
(e.g., GMCα). Within each subfamily, numbers were
assigned to identify individual genes. When a subfamily
contains only one gene from each species, we assumed
that these were orthologous and assigned the same
number ("1") for all species (e.g., "Dm GMCα1" and "Ag
GMCα1"). In cases of apparent paralogues in some spe-
cies, individual members of different species were given
different numbers (e.g., "Dm GMCγ1", "Ag GMCγ2", and
"Ag GMCγ3") because orthologues could not be identi-
fied.

These subfamilies were also identified when a different
phylogenetic algorithm (maximum parsimony method)
or a different sequence substitution model (Jones-Taylor-
Thornton amino acid substitution model [16]) was used
for phylogenetic reconstruction (Additional File 3). The
phylogenetic tree reconstructed by the maximum parsi-
mony method showed that each of the 13 subfamilies
remained clustered as a monophyletic clade except for
GMCβ and κ subfamilies although the bootstrap scores
were not high. It has been known that the maximum par-
simony method becomes unreliable when the extent of
homoplasy (backward and parallel substitutions) is high,
a problem often found when sequences are diverged con-
siderably [15]. To take into account the problem of multi-
ple substitutions, we also built a neighbor-joining tree by
assuming a more complex substitution model (the Jones-
Taylor-Thornton model). The results showed that each
subfamily was clustered as a monophyletic group with a
good bootstrap support (>88 for all subfamilies except for
the GMC κ, which had the bootstrap score, 70).

The classification of these subfamilies is further supported
by the striking evolutionary conservation in their order
and orientation within the GMC gene cluster among the
four distantly related species (Figure 2). The most readily
identifiable are GMCα found at the 5' end of the cluster
and four tandemly-arrayed families, GMCδ, ε, ζ, and θ, in
the middle of the cluster. These genes have a single copy
in the same orientation, except GMCθ, which has two
copies in some species. GMCγ has also retained a well-
conserved position between GMCα and GMCβ genes.
Although A. gambiae has two GMCγ genes in opposing

directions, the other three species contain a single copy in
the same orientation. The other subfamilies also show
conserved positions among different species despite that
they contain the varied number of gene copies (0–3) in
different species. Two copies of D. melanogaster GMCβ
genes are located in the relative position conserved among
the other species (between GMCγ and GMCδ) though EO-
β1 is located between GMCα and GMCγ genes. The GMCι
subfamily is missing from A. mellifera, but in the other
species, it is always located at the 3' end of the cluster. The
GMCκ subfamily is present only in A. gambiae and T. cas-
taneum, and in both species, the GMCκ genes are located
between the GMCι genes.

Evolution of the GMC cluster
The overall conservation of the GMC cluster among insect
species is striking, as microsynteny is typically not con-
served among these highly diverged species. For example,
only 30% of A. gambiae genes that are homologous to D.
melanogaster genes in the Adh region retain microsynteny,
where each syntenic region includes only two or three
genes [17]. The conservation of the cluster region is highly
specific to the cluster, and does not extend to the flanking
regions. We examined the location of some A. gambiae
genes that are apparently homologous to D. melanogaster
genes to see if any of the genes surrounding the D. mela-
nogaster cluster maintained microsynteny in Anopheles.
Examined genes included Rut, CG14411, CG14411, and
CG14407 in the 3' direction of the cluster and CG9009,
Eag, Hiw, CG5530, CG5560, and CG15027 in the 5' direc-
tion of the cluster, which covered about 300 kb in the area
surrounding the cluster. We found that the only gene that
maintained microsynteny with the cluster was Flo-2,
which contains the cluster within one of its introns. In
fact, in all four species, the cluster locates within the
homologous intron of Flo-2, and the first 16 amino acids
of FLO-2 are encoded by an exon located at the 3' of the
cluster (Figure 1 and Additional File 4). Flo-2 is transcrip-
tionally oriented in the opposite direction to almost all of
the GMC genes within the cluster (Figure 2). Sequences of
FLO-2 homologues in these three insect species are highly
conserved with D. melanogaster FLO-2 (77–88% pairwise
amino acid identity).

The fact that four core genes (GMCδ, ε, ζ, and θ) in the
middle of the GMC cluster have remained in tandem and
in the same orientation over hundreds of millions of years
strongly suggests that this cluster, partly or entirely, has
been maintained by natural selection. None of the four
core GMC cluster genes is a close homologue to any of the
other GMC oxidoreductases for which enzyme substrate
specificity has been determined, and therefore their cata-
lytic activities remain to be determined.
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Phylogeny of insect GMC oxidoreductasesFigure 3
Phylogeny of insect GMC oxidoreductases. The phylogeny was generated using the neighbor-joining method with Poisson correction and bootstrap 
replicates 500 times. Bootstrap values are shown at nodes. Based on the phylogeny, genes were classified into gene subfamilies (see text). A Greek letter 
in a sequence name is shown in a Roman alphabet in this figure (e.g., A for α). Abbreviations: Dm (D. melanogaster), Ag (A. gambiae) Am (A. mellifera), Tc (T. 
castaneum), Ecol (Escherichia coli), Cele (Caenorhabditis elegans), Anig (Aspergillus niger), Aory (Aspergillus oryzae), Pama (Penicillium amagasakiense), EO 
(ecdysone oxidase), and CHD (choline dehydrogenase). "DmEO_B1" (CG9504) belongs to GMCβ, but it is indicated as EO instead of GMC because its 
functional identity is known. The number with 4 or more digits (e.g., CG9503, XM961446) indicates GenBank accession number of the sequence (detailed 
sequence information is in Additional File 7). "iso1-4" of GMCβ4 indicates four isoforms of this gene (see Figure 5). All protein sequences used in this 
study are in Additional File 8.
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Other similar examples of highly conserved gene clusters
include the bithorax and Antennapedia homeobox com-
plexes of Drosophila [18] and the β-globin cluster in ver-
tebrates [19]. The genes in these clusters are coordinately
regulated by cis-acting elements that require maintenance
of a specific order and transcriptional orientation in the
cluster. We examined the expression patterns in different
developmental stages of nine D. melanogaster GMC genes
in the cluster (EO-β1, GMCα1, γ1, β3, δ1, ε1, ζ1, θ2, and
ι1). We found that these genes exhibit varying patterns of
temporal expression; EO-β1, GMCα1, γ1, δ1, and ε1
highly expressed during embryonic and metamorphic
development whereas GMCβ3 and θ2 were more highly
expressed during larval growth (Figure 4). In addition, the
Takeuchi and colleagues showed that the Drosophila
GMC genes exhibit distinct patterns of tissue-specific
expression during the critical transition from larval to
metamorphic development [9] (summarized in Figure 4).

The presence of ecdysone oxidase (EO-β1) gene in the
cluster suggests that the cluster may encode a series of
enzymes that are involved in ecdysone metabolism.
Ecdysone oxidase catalyzes the oxidation of ecdysone to
dehydroecdysone within pathways involved in degrada-
tion of edysone and/or generation of unique ecdysteroids
[9]. A diversity of ecdysteroids is produced in insects, and
their tissue- and developmental stage-specific modifica-
tion and degradation is important in the orchestration of
insect development [20-22]. We speculate that the GMC

cluster comprises a network of coordinately regulated
suite of genes that act to modify developmental and phys-
iological processes in tissue and spatially distinct patterns.
By maintaining these genes in a cluster, combinatorial
regulatory elements can efficiently coordinate their regu-
lation.

Why then is GMC cluster located in a large intron of the
Flo-2 gene? The parsimonious hypothesis is that the ances-
tral GMC gene or cluster was accidentally transposed into
the Flo-2 gene and has never had the opportunity to leave
without destroying itself or the Flo-2 gene. A more com-
pelling possibility is that the transcriptional regulation of
the GMC complex and Flo-2 are intimately tied together.
Conservation of other gene clusters, including the verte-
brate globin gene cluster and the insect homeobox gene
clusters, appears to be due to a requirement of these genes
to be coordinately regulated by local cis-acting mecha-
nisms. Flo-2 encodes the lipid raft protein flotillin-2. As
lipid rafts contain cholesterol and their derivatives includ-
ing steroids [23] and steroid binding proteins have been
detected in lipid rafts [24], Flo-2 and the GMC genes,
including ecdysone oxidase, may be coordinately regu-
lated in support of a common developmental or physio-
logical function. We speculate that cis-acting control
elements may exist in the GMC cluster and act to coordi-
nately regulate the expression of the GMC genes, and per-
haps the Flo-2 gene as well.

Expression patterns of GMC genes in the D. melanogaster clusterFigure 4
Expression patterns of GMC genes in the D. melanogaster cluster. The upper half shows developmental stage-specific 
expression patterns based on RT-PCR analyses on whole fly samples. The higher number of "+" means a higher level of expres-
sion. "-," undetectable; "ND," not determined. The bottom half shows a summary of tissue-specific expression patterns 
obtained from a previously published article [9]. The presence of each block indicates a high level of expression. First to third 
larval instar (1L-3L) and pupal (P) developmental stages are indicated.
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Duplication of genes and exons
Homologous genes typically arise from tandem duplica-
tion events that result in two or more homologues tan-
demly arrayed. The GMC cluster has retained much of its
history of gene duplication events that gave rise to the
cluster. At a subfamily level, this is most apparent for the
GMCα, γ, δ, ε, and ζ subfamilies. As these genes are tan-
demly arrayed (Figure 2) and phylogenetically form a dis-
tinct group of subfamilies (bootstrap value, 100; Figure
3), we postulate that these genes arose from the same
ancestral gene prior to the divergence of the major insect
subfamilies.

Duplication events are also seen within a subfamily. Four
of the subfamilies in the GMC cluster, GMCα, δ, ε, and ζ,
have remained as single-copy genes in the genome,
whereas GMCβ, γ, θ, ι, and κ, are multi-copy genes. Partic-
ularly, each pair of GMCγ genes (A. gambiae), GMCθ genes
(D. melanogaster and A. gambiae), GMCκ genes (T. casta-
neum), and GMCι genes (D. melanogaster) is supported by
a very high bootstrap value (99–100) and is arrayed tan-
demly. This indicates that duplication events of the GMC
genes had occurred after the emergence of the four insect
species from a common ancestor.

In addition, some exons of one gene show evidence for
multiple duplication events. The C-terminus exons of the
A. gambiae GMCβ gene has undergone multiple duplica-
tions giving rise to a tandem array of four alternative
exons, which we predicted have the essential splice con-
sensus sequences to join in-frame a common 5' exon
encoding the N-terminus (Figure 5 and also see Addi-
tional File 5). The common N-terminus exon of GMCβ4
encodes the highly conserved beta-alpha-beta fold of the
ADP-binding domain common to all GMC oxidoreduct-
ases. While the four downstream C-terminal encoding
exons (b, c, d, and e) are more similar to each other than
to other GMC oxidoreductase (bootstrap value, 100),
nonetheless the sequences have diverged considerably
from each other (Figure 3). Two of the predicted alterna-
tively spliced isoforms (a/d and a/e) are present in the
GenBank EST database supporting our predicted model of
this gene (e.g., BX606462 and BX607386 for a/d;
BM635774 and BM622197 for a/e). Approximately 9% of
alternative splicing in eukaryotes involves duplicated tan-
dem exons [25,26]. This mechanism may offer an eco-
nomical strategy to expand a cluster of similar enzymes. In
the case of the GMCβ4 gene, duplicated C-terminus exons
that contain a substrate-binding region can gain a new
function while sharing the FAD-binding region (exon a)
and regulatory elements.

Diversification of GLD and GOX in insects
In addition to GMC genes in the cluster, we discovered
several other GMC genes that reside outside the cluster in

D. melanogaster, T. castaneum, A. gambiae, and A. mellifera
(Table 1). While the identity of these genes is largely
unknown, our phylogenetic analysis suggests that several
of them belong to a gene subfamily containing glucose
dehydrogenase (GLD) and glucose oxidase (GOX)
("insect GLD/GOX/GLXr," supported by a bootstrap
value, 100; Figure 3 and Table 1). These two enzymes cat-
alyze the conversion of β-D-glucose to δ-gluconolactone
but differ in the electron acceptor [1,27].

Apparent orthologues of the previously identified GLD in
D. melanogaster were found in all four insect species (boot-
strap value, 100; Figure 3). The Gld genes of D. mela-
nogaster and A. gambiae share a very similar exon/intron
structure while honeybee Gld structure is more divergent.
Similar patterns in developmental expression are also
observed between honeybees and Drosophila (D. L. Cox-
Foster, unpublished). Because GLD is an essential gene in
Drosophila for exoskeleton metabolism [28,29], we spec-
ulate that all other arthropods with exoskeletons contain
GLD.

In addition to GLD, honeybees and beetles have addi-
tional proteins that are closely related to GLD. One gene
functionally known is GOX-1 of A. mellifera previously
identified by K. Ohashi and coworkers [30]. The other
genes in bees and beetles are functionally unknown but
are nearly equal in sequence similarity to the GLD group
and bee GOX-1; we denoted these as GLD/GOX related
proteins (GLXr). A. mellifera has two GLXr genes: GLXr-1
located in the GMC cluster and GLXr-2 in tandem with

Alternative splicing of A. gambiae GMCβ4 geneFigure 5
Alternative splicing of A. gambiae GMCβ4 gene. The 
figure is shown in a conventional direction of 5' to 3' from 
left to right (opposite to the direction in Figure 2). The 
length of exons and introns are shown in base pairs. Exon a 
(in gray color) contains the highly conserved ADP-binding 
domain (arrow) and is predicted as a shared exon in all iso-
forms. Exons b-e are predicted to be alternatively spliced C-
terminal exons. The splicing patterns of isoforms indicated in 
the phylogeny (Figure 3) are as follows: "iso1", exons a/b; 
"iso2", exons a/c, "iso3", exons a/d; "iso4", exons a/e. The 
detailed sequence information of this gene can be found in 
Additional File 5.

a b c d e

ADP-binding
domain

291 1641 1605 1602 1599

159 327 255 186

5’ 3’
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GOX-1. We isolated genomic clones containing GOX-1
and discovered GLX-r2 in these clones adjacent to GOX-1
in the same transcriptional orientation. Upon completion
of the genomic sequence of A. mellifera, we confirmed that
these two genes were adjacent and only about 700 bp
apart. These two genes share most of the exon/intron
boundaries (Figure 6), strongly suggesting that they have
arisen through tandem duplication. We generated GLX-r2
cDNAs from adult worker bees and detected two alterna-
tively spliced mRNA isoforms of GLX-r2 that differ at the
3' end, resulting in two C-terminally different protein
products (Figure 6 and Additional File 6). The coding
sequence of GLXr-2 isoform I terminates in exon 8,
whereas isoform II splices out of exon 8 before the termi-
nation codon and adds a unique carboxy-terminus
encoded in exon 9 (85 bp).

GOX-1 and GLXr-2 mRNAs have distinct patterns of
expression throughout bee development (Figure 7).
Expression of GOX-1 in the total-body samples was very
low at pre-adult stages but was induced more than 100-
fold in newly emerged adults (Figure 7b). In contrast, the
overall expression of GLXr-2 in the total-body samples
was higher in pre-adult stages, especially at post-capped
day (PC) 1–3 (Figure 7a). In addition, GLXr-2, especially
isoform II, is highly expressed in the epithelium tissues of
wings of bees at PC7-10 (data not shown), while GOX has
no expression in the same tissues. This expression pattern
in wings is similar to the pattern of D. melanogaster GLD
[29]. Therefore, it seems that GLXr-2 ancestor gene
achieved functional diversification through duplication
and alternative splicing in the bee lineage.

However, GOX-1 and GLXr-2 also share some expression
patterns; for example, both are highly expressed in hemo-
cytes [31] and are induced in similar patterns by immune
challenge [32]. These data indicate that these genes may
share some common regulatory elements for those expres-
sion patterns, further suggesting that genetic linkage
between these two genes has been under an evolutionary
constraint.

Besides insects, glucose-metabolizing GMC enzymes are
found only in fungi to date. Interestingly, GLD/GOX gene
copies evolved paraphyletically between insects and fungi
(Figure 3). In contrast, strong evolutionary conservations
are observed in sequences of choline dehydrogenase as
the orthologous gene copies are identified among E. coli,
C. elegans, and human. For GLD/GOX enzymes, substan-
tial sequence differences may have accumulated over a
long evolutionary divergence time between insects and
fungi, which may make the phylogenetic relationship
between the two groups obscure (Table 2). Alternatively,

The expression patterns of bee GLXr-2 and GOX-1Figure 7
The expression patterns of bee GLXr-2 and GOX-1. 
Relative expression levels normalized to the level of the 
EF1α gene are shown (a, two isoforms of Glxr-2; b, Gox-1). 
Developmental stages are indicated as follows: L1 (first instar 
larval stage), P1 (post-capped day 1; the first day when a larva 
has been sealed in a cell), and A1 (adult day 1; the first day 
when a bee has emerged from a cell).

a

b

The structures of bee Glxr-2 and Gox-1 genesFigure 6
The structures of bee Glxr-2 and Gox-1 genes. The 
homologous exons of the two genes are indicated by the 
same numbering of exons. Exon 6 of Glxr-2 and exon 5 of 
Gox-1 are divided into two ("a" and "b") by a single intron 
insertion. The Glxr-2 gene is alternatively spliced at the 3' end 
in the diagramed manner. The length of each exon is shown 
in base pairs. The detailed sequence information of the alter-
natively spliced region can be found in Additional File 6.
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their remote relationship may indicate that the GLD/GOX
genes in insects may not be descended from the fungal
GOX through subsequent speciation events. Instead they
may have arisen independently from a paralogue of fun-
gal GOX on the ancestral lineage leading to insects after
splitting from fungi. In this case, functional convergence
may have occurred in insects and fungi independently.

Evolution of GMC genes
Some GMC genes in the cluster, namely GMCθ,λ, andβ
subfamilies, have homologues in one or more species that
exist outside of the cluster, which suggests that the GMC
cluster may have been the birthplace for all insect GMC
genes including GLD and GOX. This hypothesis is sup-
ported by several facts as follows. (1) GLXr-1 is located in
the GMC cluster of A. mellifera whereas all other GOX,
GLD, and GLXr genes are located outside the GMC cluster.
Importantly, GLD is present on the same chromosome as
the GMC cluster in three of the four species. The Gld genes
of A. gambiae, T. castaneum, and A. mellifera are located 30
Mb, 9 Mb and 1 Mb apart from the GMC cluster, respec-
tively. (2) A cluster of three tandemly duplicated GMCβ
genes in A. mellifera are present outside of the GMC cluster
(GMCβ7–9) but are still on the same chromosome, and
these have the closest relationship with GMCβ6 in the
cluster (bootstrap value, 94). (3) One of the T. castaneum
GMCθ genes, which apparently arose from a duplication
event, is located ~250 kb away from the cluster on the
same chromosome (GMCθ6). (4) The closest homolog of
the cluster-localized A. mellifera GMCλ1 is T. castaneum
GMCλ1 located outside the cluster on a different linkage
group from that of the cluster (bootstrap value, 100).
Together these data are consistent with the hypothesis that
the GMC genes have undergone tandem duplication in
the GMC cluster and then one or more copies have relo-

cated outside of the cluster, frequently on the same chro-
mosome, before some have been further dispersed to
other chromosomes.

Relocation of genes outside the cluster would likely occur
by transposition for two reasons. First, the most common
event of transposition is "local hopping" to a nearby
region on the same chromosome [33], and secondly,
transposition would allow excising one or more genes
without disrupting the Flo-2 gene. Other larger scale chro-
mosome rearrangements (e.g., inversion and transloca-
tions) would likely disrupt the Flo-2 gene in which the
GMC cluster resides. In summary, we propose that the
location of the highly conserved core genes (GMCδ, ε, ζ,
and θ) is constrained due to shared regulatory elements
within or flanking the cluster, whereas the other GMC
genes are less constrained and have spawned a number of
new GMC genes that have relocated to other regions of the
genome.

Conclusion
Insects contain a cluster of GMC oxidoreductase genes
that is highly conserved in gene composition, gene order,
transcriptional orientation, and presence in a large intron
of the Flo-2 gene. In addition, a smaller number of GMC
oxidoreductase genes exists outside of this cluster but may
have originated from the cluster and evolved independ-
ently. Although fungal GOX and insect GLD are closely
related functionally, their relatively low sequence similar-
ity suggests that they arose independently from an ancient
GMC gene. In contrast several glucose oxidase and glucose
dehydrogenase genes within insects have a high degree of
sequence similarity consistent with the hypothesis that
these two genes have more recently arose from a common

Table 2: Pairwise amino acid sequence identity of GLD, GOX, and GLXr proteins

1 2 3 4 5 6 7 8 9 10 11 12 13

1. AmGLXr-1
2. TcGLXr-3 0.40
3. TcGLXr-4 0.41 0.63
4. TcGLD 0.45 0.53 0.49
5. AmGLD 0.46 0.54 0.48 0.68
6. DmGLD 0.45 0.56 0.52 0.65 0.63
7. AgGLD 0.46 0.54 0.52 0.65 0.63 0.71
8. AmGLXr-2 0.41 0.50 0.48 0.51 0.53 0.50 0.53
9. AmGOX-1 0.40 0.43 0.43 0.42 0.42 0.44 0.44 0.50
10. Human CHD 0.32 0.31 0.33 0.34 0.35 0.32 0.35 0.32 0.32
11. Ecol CHD 0.28 0.32 0.31 0.33 0.36 0.32 0.33 0.31 0.30 0.48
12. Anig GOX 0.25 0.23 0.23 0.24 0.25 0.24 0.25 0.23 0.23 0.23 0.27
13. Pama GOX 0.23 0.23 0.22 0.24 0.23 0.24 0.24 0.23 0.22 0.23 0.26 0.63
14. Aory GOX 0.24 0.22 0.23 0.23 0.22 0.22 0.23 0.22 0.21 0.22 0.26 0.65 0.73

The number of amino acids that is identical per site is calculated for each pair of sequence comparison with exclusion of gaps (pairwise gap 
deletion). Refer to Figure 3 for the details of sequence names.
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GLD/GOX common ancestor since the divergence of
insects.

Methods
Data mining
The presence of all GMC-related sequences in A. gambiae,
A. mellifera, and T. castaneum genomes was detected by
TBLASTN using D. melanogaster GLD sequence against the
database at the National Center for Biotechnology Infor-
mation (NCBI) [34]. The preliminary sequence data for T.
castaneum genome was provided to the NCBI from Baylor
College of Medicine Human Genome Sequencing Center
[13]. One of the outgroup sequences used in our phyloge-
netic study, Aspergillus oryzae putative GOX, was obtained
from the DOGAN (Database Of the Genomes Analyzed at
NITE [National Institute of Technology and Evaluation in
Japan]) [35]. All other outgroup sequences were obtained
from the NCBI.

When there was a predicted protein sequence in the pub-
lic database that corresponded to the BLAST hit, we evalu-
ated the sequence based on the alignments with GMC
genes in other insect species. When the sequence was rea-
sonably aligned with the putative homolog, we used the
predicted sequence. However, when the sequence had a
major insertion/deletion and/or did not have major con-
served regions, we manually annotated a sequence. The
details of sequence information can be found in Addi-
tional Files 7, 8, and 9.

Phylogenetic analysis
Multiple alignments of protein sequences were carried out
using CLUSTALW [36,37]. We reconstructed a phyloge-
netic tree using a neighbor-joining algorithm [38] imple-
mented in MEGA3 [39]. The pairwise distance matrix was
estimated based on the Poisson correction model [40]
with exclusions of gaps for each pair of sequence compar-
ison (pairwise gap deletion). A bootstrap re-sampling
analysis with 500 replicates was also performed to evalu-
ate the inferred tree topology [41].

Primers
Primers used for this study were as follows: AmGLXr-2, 5'-
CGGCCCGGAGAATCATCAG-3', 5'-ATCCGCATTTA-
CATTTCTTTGGTCTC-3' (which amplifies two products of
alternatively spliced isoforms, 548 bp for Isoform I and
455 bp for Isoform II); AmGOX-1, 5'-CTGGACTGGAAG-
TATTACACTACGAAC-3', 5'-ACGATTGGTGATTGTGAAG-
GTTCT-3'; AmEF1α (elongation factor 1 alpha), 5'-
ATGGGCAAGGGCTCGTTCAAGTA-3', 5'-CTTTCCGT-
CAGCGTTACCATCTTTGC-3'; DmGMCα1 (CG9503), 5'-
TGGTGGTTATCTGACAGTTGGTGAGG-3', 5'-ATGGCTT-
TCGTTCGGGATAATGC-3'; DmEO-β1 (CG9504), 5'-
ATGCCATTGTTTCTGCTCTTCGGTT-3', 5'-AACCAG-
TAGTCATCGGAATCGGC-3'; DmGMCβ3 (CG9512), 5'-

AAAATGTTGGGCGGCACGAATGG-3', 5'-TCCTGAGT-
GCCCAAGATGTCCATTT-3'; DmGMCγ1 (CG12398), 5'-
ATCCCGATGGTGATTTCAATGGT-3', 5'-CAGAATCAC-
CTCTCGTTTGGCTC-3'; DmGMCδ1 (CG9514), 5'-
GACGGGTTTCGGTTTCTATCAGTTCA-3', 5'-AATCTCT-
TCATAGCCTGCGTTTCACC-3'; DmGMCε1 (CG9517),
5'-CATTGGGCATCGTTGGGTAATCCG-3', 5'-
TTGGAAACGATTGCGGGTGACAGT-3'; DmGMCθ2
(CG9521), 5'-TTCAAGGATGTGCTGCCGTATTTCAA-3',
5'-ACAGCATCAGTAGTTGGGGCGTATTG-3'; DmGMCι1
(CG9522), 5'-CGGAGGAGTGGAGAACATAGTGC-3', 5'-
CAATCCCCGACAGCATCAGCAACT-3'; DmGMCζ1
(CG9518), 5'-TTCAATCCCACAGCCGTCACCTTTC-3', 5'-
GTCTATTTGCCTGCCGCTTTACTTTGT-3'.

Genomic library screening and 5' RACE
The Apis mellifera genomic library (RZPD, Germany) was
screened twice: the first time with the Gox-1 probe pro-
duced by the above primers, and the second time with the
Glxr-2 probe. The latter probe contained a mixture of two
probes produced by the above primers (for Glxr-2) and
the following set: 5'-GACGGGGCTCTCGCAACTG-3', 5'-
GGCGCACCTCCAGTAGTCGT-3'. Sequences for Glxr-2
primers were obtained from two fragments of the EST
contig 59 found in the adult bee brain cDNA library [42]:
BB160017A20G03 and BB170027B20D05. The 5' ends of
Gox-1 and Glxr-2 genes were isolated by 5' RACE System
(Invitrogen) and sequenced.

Semi-quantitative RT-PCR
Total RNA was isolated using TRI Reagent (SIGMA) fol-
lowed by DNase treatment (Ambion). To assess the gene
expression patterns, we performed RT-PCR (Promega) of
total RNA (1 μg) from different developmental stages of
A. mellifera or D. melanogaster using appropriate gene-spe-
cific primer sets. For Drosophila GMC cluster genes, band
signal intensity was compared visually and categorized to
either undetectable ("-") or relative expression ("+" to
"++++"). As control, reactions for eIF2α were run to con-
firm the uniform quantity and quality of samples. For A.
mellifera Gox-1 and Glxr-2, RT-PCR products were sub-
jected to Southern blot analysis and probed with each
gene's fragment generated by the primers used for
genomic library screening. Signal intensity was detected
and analyzed by STORM scanner and ImageQuant
(Molecular Dynamics) and was normalized to the level of
Ef1α signals.
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