2,366 research outputs found

    Nuclear Magnetic Resonance in Low-Symmetry Superconductors

    Get PDF
    We consider the nuclear spin-lattice relaxation rate, 1/T1T1/T_1T in superconductors with accidental nodes. We show that a Hebel-Slichter-like peak occurs even in the absence of an isotropic component of the superconducting gap. The logarithmic divergence found in clean, non-interacting models is controlled by both disorder and electron-electron interactions. However, for reasonable parameters, neither of these effects removes the peak altogether.Comment: 10 pages, 5 figure

    The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation

    Get PDF
    Complex cognitive functions are widely recognized to be the result of a number of brain regions working together as large-scale networks. Recently, complex network analysis has been used to characterize various structural properties of the large scale network organization of the brain. For example, the human brain has been found to have a modular architecture i.e. regions within the network form communities (modules) with more connections between regions within the community compared to regions outside it. The aim of this study was to examine the modular and overlapping modular architecture of the brain networks using complex network analysis. We also examined the association between neighborhood level deprivation and brain network structure – modularity and grey nodes. We compared network structure derived from anatomical MRI scans of 42 middle-aged neurologically healthy men from the least (LD) and the most deprived (MD) neighborhoods of Glasgow with their corresponding random networks. Cortical morphological covariance networks were constructed from the cortical thickness derived from the MRI scans of the brain. For a given modularity threshold, networks derived from the MD group showed similar number of modules compared to their corresponding random networks, while networks derived from the LD group had more modules compared to their corresponding random networks. The MD group also had fewer grey nodes – a measure of overlapping modular structure. These results suggest that apparent structural difference in brain networks may be driven by differences in cortical thicknesses between groups. This demonstrates a structural organization that is consistent with a system that is less robust and less efficient in information processing. These findings provide some evidence of the relationship between socioeconomic deprivation and brain network topology

    Dean Emeritus Patrick J. Rohan

    Get PDF
    (Excerpt) Patrick J. Rohan’s connection to St. John’s reaches back more than half a century. He graduated from St. John’s University in 1954 and from the School of Law in 1956. Two years later, he joined the Law School faculty, where he served for fifty-two years until his retirement in June 2009. He died just a few months later, on November 26, 2009. The School of Law community mourns the passing of this man of St. John’s—Dean Emeritus, Professor of Law, alumnus, supporter, and friend

    When is the Kadowaki-Woods ratio universal?: Supplementary Material

    Get PDF
    The supplementary material contains details of the derivations.Sections:I. Scattering and the self-energy in arbitrary bandstructures systemsa. The Two-Band Caseb. The Spectral Density FunctionII. Interband scatteringa. Effects of significant interband scattering on the intraband self-energy componentsIII. Derivation of the conductivity formul

    Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains

    Full text link
    Experiments in coherent nuclear and electron magnetic resonance, and optical spectroscopy correspond to control of quantum mechanical ensembles, guiding them from initial to final target states by unitary transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should take as little time as possible so as to minimize the effects of relaxation and decoherence and to optimize the sensitivity of the experiments. Here we give efficient syntheses of various unitary transformations on Ising spin chains of arbitrary length. The efficient realization of the unitary transformations presented here is obtained by computing geodesics on a sphere under a special metric. We show that contrary to the conventional belief, it is possible to propagate a spin order along an Ising spin chain with coupling strength J (in units of Hz), significantly faster than 1/(2J) per step. The methods presented here are expected to be useful for immediate and future applications involving control of spin dynamics in coherent spectroscopy and quantum information processing
    • …
    corecore