52 research outputs found

    Sci of Relief survey results (spring 2019)

    Get PDF

    Human monocytes augment invasiveness and proteolytic activity of inflammatory breast cancer

    Get PDF
    Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer, and here, we examined in vitro the interactions between the human IBC cell line SUM149 and U937 human naive monocytes. We found an altered morphology, enhanced invasiveness and proteolytic activity of SUM149 cells when cultured with U937 cells or in U937-conditioned media (U937-CM). Increases in expression and activity of the cysteine protease cathepsin B and expression of caveolin-1 were also detected in SUM149 cells grown in U937-CM, thus suggesting a contribution of these proteins to the augmented invasion through and proteolysis of the extracellular matrix by the IBC cells

    Pathomimetic cancer avatars for live-cell imaging of protease activity

    Get PDF
    Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the clinical importance of proteases in cancer progression, their functional roles individually and within the context of complex protease networks have not yet been well defined. These gaps in our understanding might be addressed with: 1) accurate and sensitive tools and methods to directly identify changes in protease activities in live cells, and 2) pathomimetic avatars for cancer that recapitulate in vitro the tumor in the context of its cellular and non-cellular microenvironment. Such avatars should be designed to facilitate mechanistic studies that can be translated to animal models and ultimately the clinic. Here, we will describe basic principles and recent applications of live-cell imaging for identification of active proteases. The avatars optimized by our laboratory are three-dimensional (3D) human breast cancer models in a matrix of reconstituted basement membrane (rBM). They are designated mammary architecture and microenvironment engineering (MAME) models as they have been designed to mimic the structural and functional interactions among cell types in the normal and cancerous human breast. We have demonstrated the usefulness of these pathomimetic avatars for following dynamic and temporal changes in cell:cell interactions and quantifying changes in protease activity associated with these interactions in real-time (4D). We also briefly describe adaptation of the avatars to custom-designed and fabricated tissue architecture and microenvironment engineering (TAME) chambers that enhance our ability to analyze concomitant changes in the malignant phenotype and the associated tumor microenvironment

    Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells

    Get PDF
    Cathepsin B and pro-urokinase plasminogen activator (pro-uPA) localize to the caveolae of HCT 116 human colorectal carcinoma cells, an association mediated by active K-RAS. In this study, we established a stable HCT 116 cell line with a gene encoding antisense caveolin-1 (AS-cav-1) to examine the effects of caveolin-1, the main structural protein of caveolae, on the expression and localization of cathepsin B and pro-uPA, and their cell-surface receptors p11 and uPA receptor (uPAR), respectively. AS-cav-1 HCT 116 cells secreted less procathepsin B than control (empty vector) cells as measured by immunoblotting and pepsin activation of the proenzyme. Expression and secretion of pro-uPA was also downregulated in AS-cav-1 HCT 116 cells. Localization of cathepsin B and pro-uPA to caveolae was reduced in AS-cav-1 HCT 116 cells, and these cells expressed less total and caveolae-associated p11 and uPAR compared with control cells. Previous studies have shown that uPAR forms a complex with caveolin-1 and beta1-integrin, and we here show that downregulation of caveolin-1 also suppressed the localization of beta1-integrin to caveolae of these cells. Finally, downregulation of caveolin-1 in HCT 116 cells inhibited degradation of the extracellular matrix protein collagen IV and the invasion of these cells through Matrigel. Based on these results, we hypothesize that caveolin-1 affects the expression and localization of cathepsin B and pro-uPA, and their receptors, thereby mediating cell-surface proteolytic events associated with invasion of colon cancer cells

    Caveolin-1-mediated expression and secretion of kallikrein 6 in colon cancer cells.

    Get PDF
    Kallikreins are secreted proteases that may play a functional role and/or serve as a serum biomarker for the presence or progression of certain types of cancers. Kallikrein 6 (KLK6) has been shown to be upregulated in several types of cancers, including colon. The aims of this study were to elucidate pathways that influence KLK6 gene expression and KLK6 protein secretion in the HCT116 human colon cancer cells. Our data indicate a central role for caveolin-1 (CAV-1), the main structural protein of caveolae, in both KLK6 gene expression and protein secretion. Sucrose gradient subcellular fractionation reveals that CAV-1 and KLK6 colocalize to lipid raft domains in the plasma membrane of HCT116 cells. Furthermore, we show that CAV-1, although it does not directly interact with the KLK6 molecule, enhances KLK6 secretion from the cells. Deactivation of CAV-1, through SRC-mediated phosphorylation, decreased KLK6 secretion. We also demonstrate that, in colon cancer cells, CAV-1 increased the amount of phosphorylated AKT in cells by inhibiting the activity of the AKT-negative regulators PP1 and PP2A. This study demonstrates that proteins such as CAV-1 and AKT, which are known to be altered in colon cancer, affect KLK6 expression and KLK6 secretion

    Functional live-cell imaging demonstrates that beta1-integrin promotes type IV collagen degradation by breast and prostate cancer cells.

    Get PDF
    The ability of tumor cells to adhere to, migrate on, and remodel extracellular matrices is mediated by cell surface receptors such as beta1-integrins. Here we conducted functional live-cell imaging in real time to investigate the effects of modulating beta1-integrin expression and function on proteolytic remodeling of the extracellular matrix. Human breast and prostate cancer cells were grown on reconstituted basement membrane containing a quenched fluorescent form of collagen IV. Generation of cleavage products and the resulting increases in fluorescence were imaged and quantified. Decreases in the expression and activity of beta1-integrin reduced digestion of quenched fluorescent-collagen IV by the breast and prostate cancer cells and correspondingly their invasion through and migration on reconstituted basement membrane. Decreased extracellular matrix degradation also was associated with changes in the constituents of proteolytic pathways: decreases in secretion of the cysteine protease cathepsin B, the matrix metalloproteinase (MMP)-13, and tissue inhibitors of metalloproteinases (TIMP)-1 and 2; a decrease in expression of MMP-14 or membrane type 1 MMP; and an increase in secretion of TIMP-3. This is the first study to demonstrate through functional live-cell imaging that downregulation of beta1-integrin expression and function reduces proteolysis of collagen IV by breast and prostate cancer cells

    Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion

    Get PDF
    Abstract Introduction Inflammatory breast cancer (IBC) is an aggressive, metastatic and highly angiogenic form of locally advanced breast cancer with a relatively poor three-year survival rate. Breast cancer invasion has been linked to proteolytic activity at the tumor cell surface. Here we explored a role for active cathepsin B on the cell surface in the invasiveness of IBC. Methods We examined expression of the cysteine protease cathepsin B and the serine protease urokinase plasminogen activator (uPA), its receptor uPAR and caveolin-1 in two IBC cell lines: SUM149 and SUM190. We utilized a live cell proteolysis assay to localize in real time the degradation of type IV collagen by IBC cells. IBC patient biopsies were examined for expression of cathepsin B and caveolin-1. Results Both cell lines expressed comparable levels of cathepsin B and uPA. In contrast, levels of caveolin-1 and uPAR were greater in SUM149 cells. We observed that uPA, uPAR and enzymatically active cathepsin B were colocalized in caveolae fractions isolated from SUM149 cells. Using a live-cell proteolysis assay, we demonstrated that both IBC cell lines degrade type IV collagen. The SUM149 cells exhibit predominantly pericellular proteolysis, consistent with localization of proteolytic pathway constitutents to caveolar membrane microdomains. A functional role for cathepsin B was confirmed by the ability of CA074, a cell impermeable and highly selective cathepsin B inhibitor, to significantly reduce pericellular proteolysis and invasion by SUM149 cells. A statistically significant co-expression of cathepsin B and caveolin-1 was found in IBC patient biopsies, thus validating our in vitro data. Conclusion Our study is the first to show that the proteolytic activity of cathepsin B and its co-expression with caveolin-1 contributes to the aggressiveness of IBC

    Engaging and empowering students as change agents in science education

    Get PDF
    Students engaged as partners in pedagogical research can be empowered to become change agents in higher education. Students often bring unique insight, perceptions and ideas that complement faculty expertise regarding teaching practices. In this session, we will explore a partnership model that we have used to engage a team of undergraduate Science students with Science faculty and staff to create novel cancer biology pedagogy. Specifically, the undergraduate student researchers will showcase their strategies in working collaboratively to develop 1) a cancer biology teaching lab that will be implemented into the first-year Biology courses, and 2) a cancer biology workshop for public education with our community partners, Let’s Talk Science and the Windsor Cancer Research Group. In addition to promoting a deeper understanding of cancer biology and science education, we will also demonstrate how this model builds and strengthens student-faculty partnerships in Science and creates new pathways for engagement and networking of students within the community. Equipped with these transformative experiences, students are empowered to take on educational leadership roles and hence become positive change agents of higher education in Science. We will also consider mechanisms for adopting our model of student-faculty partnerships to other disciplines, thus enriching the overall teaching culture
    • …
    corecore