125 research outputs found

    Transcriptional analysis reveals distinct subtypes in amyotrophic lateral sclerosis: implications for personalized therapy

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an incurable disease, caused by the loss of the upper and lower motor neurons. The lack of therapeutic progress is mainly due to the insufficient understanding of complexity and heterogeneity underlying the pathogenic mechanisms of ALS. Recently, we analyzed whole-genome expression profiles of motor cortex of sporadic ALS patients, classifying them into two subgroups characterized by differentially expressed genes and pathways. Some of the deregulated genes encode proteins, which are primary targets of drugs currently in preclinical or clinical studies for several clinical conditions, including neurodegenerative diseases. In this review, we discuss in-depth the potential role of these candidate targets in ALS pathogenesis, highlighting their possible relevance for personalized ALS treatments

    Genetics of Parkinson’s Disease: The Role of Copy Number Variations

    Get PDF
    Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder, was long believed to be a non-genetic sporadic origin syndrome. The identification of distinct genetic loci responsible for rare Mendelian forms of PD has represented a revolutionary breakthrough, allowing to discover novel mechanisms underlying this debilitating still incurable condition. Along with single-nucleotide polymorphisms (SNPs), other kinds of DNA molecular defects have emerged as significant disease-causing mutations, including large chromosomic structural rearrangements and copy number variations (CNVs). Due to their size variability and to the different sensitivity and resolution of detection methodologies, CNVs constitute a particular challenge in genetic studies and the pathogenetic or susceptibility impact of specific CNVs on PD is currently under debate. In this chapter, we will review the current literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will discuss the recently highlighted role of PARK2 heterozygous CNVs, the possible common founder effects of PD gene rearrangements and the importance to map genetic breakpoints. We will also add a summary about the current available molecular methods and bioinformatics web resources to detect and interpret CNVs. Assessing the global genome-wide burden of large CNVs and elucidating the role of de novo rare structural variants on PD may reveal new candidate genes and consequently ameliorate diagnosis and counselling of mutations carriers

    Molecular Taxonomy: Use of Transcriptional Profiles to Identify Different ALS Subtypes

    Get PDF
    Advances in diagnostic techniques and high-throughput biotechnologies provide a compelling opportunity to improve the diagnosis and treatment of diseases by developing a “New Taxonomy” that defines diseases on the basis of their underlying molecular and environmental factors rather than on traditional physical signs and symptoms. Oncology represents the first interesting example of how genomic medicine has changed the understanding of diseases and their therapy. However, much work remains to be completed on the molecular characterization and classification of complex and multifactorial diseases, including neurodegenerative disorders. Our research group has recently shown the genomic heterogeneity of sporadic amyotrophic lateral sclerosis (SALS), identifying two divergent subtypes associated with differentially expressed genes and pathways and providing several potential biomarkers and therapeutic targets. This chapter reviews the results emerged from our work, highlighting how molecular characterization of SALS patients may provide a framework for developing a more precise and accurate classification of diseases that could revolutionize the diagnosis, therapy, and clinical decisions of diseases, leading to more individualized treatments and improved outcomes for patients

    PRKN (arkin RBR E3 ubiquitin protein ligase )

    Get PDF
    PARK2 (also known as Parkin RBR E3 ubiquitin protein ligase) is one of the largest genes in our genome. It undergoes an extensive alternative splicing both at transcript and protein level, producing multiple transcript variants and distinct protein isoforms. The precise function of PARK2 is still not clear; however, the encoded protein is a component of a multiprotein E3 ubiquitin ligase complex that mediates the targeting of substrates for proteasomal degradation. Mutations in this gene cause Parkinson disease and autosomal recessive juvenile Parkinson disease. Further molecular defects have been linked to other human malignancies. Here, we review some major data on PARK2, concerning the genetic structure, the transcription regulation, the encoded protein and functions, and its implication in human disease

    Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis

    Get PDF
    BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. RESULTS: By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. CONCLUSION: Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic genes implies a combined reduction of mitochondrial and cytoplasmic energy supply, with a possible role in the death of ALS motoneurons. Identifying candidate genes exclusively expressed in non-neuronal cells, we also highlight the importance of these cells in disease development in the motor cortex. Notably, some pathways and candidate genes identified by this study are direct or indirect targets of medication already applied to unrelated illnesses and point the way towards the rapid development of effective symptomatic ALS therapies

    Genomic profiling of cortical neurons following exposure to β-amyloid

    Get PDF
    In vitro and in vivo studies have shown that beta-amyloid peptide induces neuronal cell death. To explore the molecular basis underlying beta-amyloid-induced toxicity, we analyzed gene expression profiles of cultured rat cortical neurons treated for 24 and 48 h with synthetic beta-amyloid peptide. From the 8740 genes interrogated by oligonucleotide microarray analysis, 241 genes were found to be differentially expressed and segregated into distinct clusters. Functional clustering based on gene ontologies showed coordinated expression of genes with common biological functions and metabolic pathways. The comparison with genes differentially expressed in cerebellar granule neurons following serum and potassium deprivation indicates the existence of common regulatory mechanisms underlying neuronal cell death. Our results offer a genomic view of the changes that accompany beta-amyloid-induced neurodegeneration

    Is this the real time for genomics

    Get PDF
    In the last decades, molecular biology has moved from gene-by-gene analysis to more complex studies using a genome-wide scale. Thanks to high-throughput genomic technologies, such as microarrays and next-generation sequencing, a huge amount of information has been generated, expanding our knowledge on the genetic basis of various diseases. Although some of this information could be transferred to clinical diagnostics, the technologies available are not suitable for this purpose. In this review, we will discuss the drawbacks associated with the use of traditional DNA microarrays in diagnostics, pointing out emerging platforms that could overcome these obstacles and offer a more reproducible, qualitative and quantitative multigenic analysis. New miniaturized and automated devices, called Lab-on-Chip, begin to integrate PCR and microarray on the same platform, offering integrated sample-to-result systems. The introduction of this kind of innovative devices may facilitate the transition of genome-based tests into clinical routine. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

    Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex

    Get PDF
    AbstractAmyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease, caused by the loss of motor neurons in the brain and spinal cord. Although 10% of ALS cases are familial (FALS), the majority are sporadic (SALS) and probably associated to a multifactorial etiology. Currently there is no cure or prevention for ALS. A prerequisite to formulating therapeutic strategies is gaining understanding of its etio-pathogenic mechanisms. In this study we analyzed whole-genome expression profiles of 41 motor cortex samples of control (10) and sporadic ALS (31) patients. Unsupervised hierarchical clustering was able to separate control from SALS patients. In addition, SALS patients were subdivided in two different groups that were associated to different deregulated pathways and genes, some of which were previously associated to familiar ALS. These experiments are the first to highlight the genomic heterogeneity of sporadic ALS and reveal new clues to its pathogenesis and potential therapeutic targets
    • …
    corecore