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Abstract 
PARK2 (also known as Parkin RBR E3 ubiquitin 

protein ligase) is one of the largest genes in our 

genome. It undergoes an extensive alternative 

splicing both at transcript and protein level, 

producing multiple transcript variants and distinct 

protein isoforms. The precise function of PARK2 is 

still not clear; however, the encoded protein is a 

component of a multiprotein E3 ubiquitin ligase 

complex that mediates the targeting of substrates for 

proteasomal degradation. Mutations in this gene 

cause Parkinson disease and autosomal recessive 

juvenile Parkinson disease. Further molecular 

defects have been linked to other human 

malignancies. Here, we review some major data on 

PARK2, concerning the genetic structure, the 

transcription regulation, the encoded protein and 

functions, and its implication in human diseases. 
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Identity 
Other names: PARK2, PDJ, PRKN, AR-JP, 

LPRS2, Parkin 

HGNC (Hugo): PRKN 

Location: 6q26 

Local order: PARK2 is flanked towards the 

telomeric direction by PACRG (or PARK2 co-

regulated) gene, which lies in a head-to-head 

arrangement and shares a common promoter with the 

adjacent PARK2 (West et al., 2003). In the 

centromeric direction PARK2 is flanked by 

AGPAT4 (1-acylglycerol-3-phosphate O-

acyltransferase), which encodes a member of the 1-

acylglycerol-3-phosphate O-acyltransferase family. 

According to NCBI MapViewer, further elements 

overlap or surround the PARK2 genetic region, such 

as two pseudogenes (KRT8P44 and TRE-TTC15-1) 

and a set of non-coding RNAs (LOC105378094, 

LOC105378098, LOC105378097 and 

LOC105369171). 

Figure 1 displays the human chromosome 6 (NCBI Reference Sequence NC_000006.12) and relative localization and orientation 
of PARK2 and flanking genes. PARK2 gene is represented in blue and is transcribed in antisense orientation (reverse strand). 

Further genes and non-coding RNAs map in this locus. 
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Figure 2 displays the three full-length Reference Sequences of PARK2 gene (NCBI - Nucleotide Database). Corresponding 
GenBank Accession Numbers are indicated on the left. Exons are represented as coloured boxes (blue for coding regions and 
grey for non coding), whereas the dashed line indicates intronic regions. The green triangle specifies the start codon, while the 

red one designates the stop codon. 
 

DNA/RNA 

Description 

PARK2 is one of the largest genes in the human 

genome, and spans more than 1.38 Mb of genomic 

DNA in the long arm of chromosome 6 (reverse 

strand). Based on the first isolated transcript, the 

genomic organization and exon/intron boundary 

sequences of PARK2 were established of 12 exons. 

Transcription 

Currently, the NCBI RefSeq database annotates 3 

representative transcripts as full-length PARK2 

mRNAs (Figure 2). However, Homo sapiens cDNA 

sequences deposited in GenBank and UniGene 

repositories, coaligned on the genomic sequence and 

clustered in a minimal non-redundant way, support 

at least 21 different alternatively spliced mRNAs 

composed by 17 exons (Figure 3) (La Cognata et al., 

2014; Scuderi et al., 2014). Each of these splice 

variants is indicated in Table 1. 

Pseudogene 

No known pseudogenes. 

Protein 

Description 

The canonical PARK2 protein (Accession number 

BAA25751.1) (465 aa) comprises an N-terminal 

ubiquitin-like (UBQ) domain and two C-terminal in-

between ring fingers (IBR) domains (Kitada et al., 

1998).  

 

Domain Start Stop E-value  

UBQ 1 72 2.95e-16 

IBR 313 377 4.49e-14 

IBR 401 457 0.142 

 

The UBQ domain targets specific protein substrates 

for degradation by the proteasome, whereas IBR 

domains occur between pairs of ring fingers and play 

a role in protein quality control (Figure 4). The 

predicted PARK2 protein isoforms, encoded by the 

alternative splice transcripts currently known, 

structurally diverge from the canonic one for the 

presence or absence of the UBQ domain and for one 

or both IBR domains. Moreover, when UBQ domain 

is present, it often differs in length from the 

canonical one (La Cognata et al, 2014: Scuderi et al., 

2014). 

Expression 

PARK2 is widely expressed in a variety of tissue  

types, including nervous system areas (brain, 

substantia nigra, mesencephalon, cerebellum, frontal 

cortex, striatum) (Shimura et al., 2001; 

Schlossmacher et al., 2002; LaVoie et al., 2005; Sun 

et al., 2013) and peripheral regions (skeletal muscle, 

heart and testicular tissue) (Kitada et al., 1998; 

Rosen et al., 2006), as well as in immortalized cell 

lines (neuroblastoma, kidney, epithelial, breast 

cancer and colon cancer cell lines) (Yamamoto et al., 

2005; Henn et al., 2007; Poulogiannis et al., 2010; 

Tay et al., 2010).  

Gene #mRNA Acc.Num. Transcript Length 

PARK2  

1. NM_004562.2 4073 bp 

2. AF381282.1 1157 bp 

3. AF381284.1 1158 bp 

4. BC022014.2 1575 bp 

5. NM_013987.2 3989 bp 

6. NM_013988.2 3626 bp 

7. AK294684.1 1115 bp 

8. GU345837.1 1298 bp 

9. GU345838.1 1340 bp 

10. GU345840.1 1313 bp 

11. GU357501.1 936 bp 

12. GU357502.1 873 bp 

13. GU361466.1 1279 bp 

14. GU361467.1 1229 bp 

15. GU361468.1 1010 bp 

16. GU361469.1 1559 bp 

17. GU361470.1 1561 bp 

18. GU361471.1 634 bp 

19. KC357594.1 454 bp 

20. KC357595.1 1627 bp 

21. KC774171.1 1282 bp 
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Figure 3 displays the structures of the currently known PARK2 mRNA splicing variants listed in Unigene Cluster Hs.132954 (La 
Cognata et al., 2014). Each mRNA variant is indicated with a number corresponding to that indicated in the Table 1. 

 

 

Figure 4 shows the domain composition of PARK2 protein, obtained from SMART Genome tool (http://smart.embl.de/). UBQ is 
the N-term ubiquitin domain, while IBRs are the C-term in-between ring fingers domains. In Table 2 are reported the aminoacidic 

start and stop positions and the E-value of the domain prediction. 
 

 

Figure 5 (adapted from Scuderi et al., 2014) shows a representative immunoblot of parkin protein isoforms in homogenized rat 
brain, visualized by using five different antibodies (Ab1, Ab2, Ab3, Ab4, Ab5). Immunoblot for β-tubulin is used as control. The 

right panel of the figure shows the localization of the epitopes recognized by the five antibodies on the canonical parkin protein. 
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Figure 6 (adapted from Maugeri et al., 2015) shows the immunolocalization of parkin protein in glioblastoma cell lines (A172 
cells). β-actin (red) was used as control and nuclei were stained with DAPI (blue). 

 

In addition, distinct expression patterns of the 

PARK2 spliced isoforms have emerged in human 

leukocytes (Kasap et al., 2009), glioma and lung 

adenocarcinoma cell lines (D'Amico et al., 2015; 

Maugeri et al., 2015) and aged brain (Pawlyk et al., 

2003). The differential expression of PARK2 splice 

isoforms have also observed in rat and mouse central 

and peripheral tissues and developmental stages 

(Horowitz et al., 1999; D'Agata et al., 2000; Gu et 

al., 2000; Stichel et al., 2000; Huynh et al., 2001). 

Localisation 

Subcellular localisation: PARK2 is mainly 

cytoplasmatic (Figure 5). Positive signals have been 

detected in endoplasmic reticulum (Imai et al., 

2002), perinuclear region, microtubules (Ren et al., 

2003), nucleus and plasma membrane. PARK2 

protein also colocalizes with Lewy bodies 

(Schlossmacher et al., 2002), the pathological 

hallmark of Parkinson's Disease and dementia. 

Function 

PARK2 protein acts as an E3 ubiquitin protein ligase 

and is responsible of substrates recognition for 

proteasome-mediated degradation. It tags various 

types of proteins, including cytosolic (SNCAIP 

(Synphilin-1), GPR37 (Pael-R), SEPT5  

(CDCrel-1) and 2a, SNCA ID: 46121> (α-

synuclein), p22, Synaptogamina XI) (Imai et al., 

2000; Shimura et al., 2000; Zhang et al., 2000; 

Chung et al., 2001; Staropoli et al., 2003), nuclear 

(Cyclin E, Cyclin D) (Ikeuchi et al., 2009; Gong et 

al., 2014) and mitochondrial ones (MFN1 and 

MFN2, VDAC, TOMM70A, TOMM40 and 

TOMM0, BAK1, RHOT1 (MIRO1) and RHOT2 

(MIRO2), FIS1) (Narendra et al., 2008; Chan et al., 

2011; Yoshii et al., 2011; Cookson, 2012; Jin et al., 

2012).  

The number of targets is such high that parkin 

protein results involved in numerous molecular 

pathways (proteasome-degradation, mitochondrial 

homeostasis, mitophagy, mitochondrial DNA 

stability, regulation of cellular cycle). 

Homology 

PARK2 gene shows a great evolutionary 

conservation across species, especially mammals. 

Mouse and rat species represent the most common 

animals used to model and study human pathologies.  

Human PARK2 protein shows a protein similarity of 

about 50% with rat, while it is more similar with the 

mouse parkin (90% of similarity) (protein similarity 

is calculated used Genomicus - PhyloView tool) 

(Figure 8). 

 

Figure 7 shows the major pathways in which PARK2 protein is involved: proteasome-degradation of substrates, mitochondrial 
homeostasis and mitophagy, and regulation of cellular cycle and cell death. 
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Figure 8 shows the evolutionary PARK2 Gene Tree, constructed using the multiple genome comparison tool PhyloView of 
Genomicus v.82.01 (http://www.genomicus.biologie.ens.fr/). This tool compares a specific gene with all the genomes that 

possess a homolog (Louis et al., 2015). Mammalia taxon has been defined as the root of the tree. PARK2 gene is displayed and 
highlighted in the central part of the figure. The internal nodes of the phylogenetic tree are represented as red boxes for 

duplication and blue boxes for speciation events. The percentage of similarity of homologous proteins is represented with 
different colours, as indicated in the legend. 

 

Mutations 

Germinal 

A wide spectrum of loss-of-function mutations in 

PARK2 including simple mutations (nonsense, 

missense and splice site mutations), frameshift 

indels or in the untraslated regions, as well as Copy 

Number Variations of the promoter region and single 

or multiple exons PARK2 mutations, were identified 

across the entire gene in either homozygous, 

compound heterozygous or heterozygous state in 

familial and sporadic patients from different 

ethnicities. Heterozygous PARK2 variants have also 

been observed in healthy control individuals, making 

the assessment of pathogenicity for these variants 

quite complex. A complete and updated view of all 

PARK2 currently known mutations is available at 

the Parkinson Disease Mutation Database 

(http://www.molgen.vib-ua.be/PDMutDB/), which 

collects DNA variations screened among more than 

800 families and linked to PD. 

Somatic 

Along with the germinal mutations occuring in 

Parkinson's Disease, genetic defects have also been 

observed in solid tumors. Based on the analysis of 

recent next generation sequencing data, the 

frequency of PARK2 mutations is relatively high in 

cervical cancer (5.6 %), lung squamous cell cancer 

(5.6 %), colorectal cancer (2.4 ~ 5.6 %), gastric 

cancer (4.6 %), skin cutaneous melanoma (3.5 %), 

lung adenocarcinoma (2.7 ~ 3.1 %), and 

endometrioid cancer (2.1%) Most cancer-derived 

PARK2 mutations are located at conserved regions, 

and more than 10% of mutations lead to frame shifts 

or truncations, suggesting that those mutations may 

disrupt or abolish the function of PARK2 (Xu et al., 

2014). A list of the known cancer-derived mutations 

is available at the COSMIC Database and is 

summarized in Figure 9. 

Mutation Type Mutant samples 

Substitution nonsense 6 

Substitution missense 105 

Substitution synonymous 52 

Insertion inframe 0 

Insertion frameshift 2 

Deletion inframe 0 

Deletion frameshift 4 

Complex 1 

Other 0 

Epigenetics 

Promoter hypermethylation is a common epigenetic 

mechanism to alter the gene expression. PARK2 

promoter hypermethylation has been found in acute 

lymphoblastic leukemia, chronic myeloid leukemia 

and colorectal cancer (Agirre et al., 2006; Xu et al., 

2014). However, the pathogenic role of specific 

epigenetic changes has not been yet clarified. 

Implicated in 

Parkinson's Disease 

Note 

Mutations in PARK2 are responsible of 50% of cases 

with autosomal recessive juvenile Parkinsonism 

(AR-JP). They also explain ~15% of the sporadic 

cases with onset before 45 (Lucking et al., 2000; 

Bonifati, 2012) and act as susceptibility alleles for 

late-onset forms of Parkinson disease (2% of cases) 

(Oliveira et al., 2003).  
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Figure 9 shows the overall distribution of PARK2 somatic mutations in cancer listed in COSMIC Database 
(http://cancer.sanger.ac.uk/cosmic) (November 2015). The exact number of collected somatic mutations in different cancer types 

is indicated in Table 3. 

 

Clinical features of PARK2 homozygous mutation 

carriers are generally indistinguishable from those of 

idiopathic PD patients with the exception of a clear 

drop in onset age. Typically PARK2 patients present 

the classic symptoms of PD (such as bradykinesia, 

rigidity, and tremor), disease onset before the age of 

50 years and a slow disease progression. Although 

they respond well to levodopa treatment, they are 

more likely to develop treatment-induced motor 

complications earlier in the treatment (Nuytemans et 

al., 2010). 

Alzheimer Disease 
Lonskaya and colleagues investigated the role of 

parkin in postmortem brain tissues from 21 patients 

with Alzheimer Disease (AD) and 15 control 

subjects. They observed decreased parkin solubility 

in cortex of patients and parkin co-localization with 

intraneuronal amyloid-beta depositions (Aβ1-42) in 

the hippocampus and cortex. Parkin accumulation 

with intraneuronal Aβ and p-Tau was detected in 

autophagosomes in AD brains. By using a gene 

transfer animal model, the authors also demonstrated 

that the expression of wild type parkin facilitate 

autophagic clearance and promoted deposition of 

Aβ1-42 and p-Tau into the lysosome (Lonskaya et 

al., 2013). Parkin, therefore, may clear autophagic 

defects via autophagosome degradation. 

Leprosy 
Using a positional cloning strategy in 197 

Vietnamese leprosy simplex families, Mira et al. 

found significant associations between leprosy and 

17 markers in the 5-prime regulatory region shared 

by PARK2 and PACRG. They then confirmed these 

results in 587 Brazilian leprosy cases and 388 

unaffected controls. RT-PCR analysis detected wide 

expression of both PARK2 and PACRG in tissues, 

and suggested that, in addition to the common 

bidirectional promoter, gene-specific  

transcriptional activators may be involved in 

regulating cell- and tissue-specific gene expression 

(Mira et al., 2004). In 2013, Alter et al. replicated 

these findings showing a susceptibility locus in the 

shared PARK2 and PACRG promoter region in a 

Vietnamese population.  

They also found that two SNPs (rs1333955 and 

rs2023004) were associated with susceptibility to 

leprosy in a northern Indian population (Alter et al., 

2013). 

Gliomas 

Veeriah et al. provided evidence that PARK2 acts as 

a tumour suppressor gene in glioblastoma 

multiforme. Genetically, they detected PARK2 copy 

number loss in 53 of 216 glioblastomas and somatic 

point mutations in 7 glioblastomas specimens 

(Veeriah et al., 2010). The action of tumour 

suppressor gene for gliomas has been furthermore 

described by Yeo et al., who found parkin expression 

dramatically reduced in glioma cells, while its 

restoration promoted G(1) phase cell-cycle arrest 

and mitigated the proliferation rate (Yeo et al., 

2012). Authors suggested the analysis of parkin 

pathway activation as predictive for the survival 

outcome of patients with glioma. The effects of 

PARK2 on tumour cell growth were also confirmed 

by Lin et al., who reported that PARK2 is frequently 

deleted and underexpressed in human gliomas, and 

that restoration of PARK2 significantly inhibited 

glioma cell growth (Lin et al., 2015).  

An interesting transcriptional target of parkin is p53. 

Viotti et al. were able to demonstrate that parkin 

levels inversely correlate to brain tumour grade and 

p53 levels in oligodendrogliomas, mixed gliomas 

and glioblastomas, and established that p53 controls 

parkin promoter transactivation, mRNA and protein 

levels (Viotti et al., 2014). 
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Figure 10 (adapted from Ambroziak et al., 2015) shows the hypothesized mechanism of the Ex2-5 duplication observed in a 
patient with early-onset PD. The authors suggest the FoSTeS/MMBIR (fork stalling and template switching/micro-homology-
mediated break-induced replication) mechanism as responsible of the rearrangement. Upon replicating, the first exon of the 

PARK2 gene replication fork stalled and one strand invaded either the sister molecule or the homologue chromosome in inverted 
orientation (1), resulting in inverted duplication. Subsequently, the original forks were restored, but primed upstream of the point 

where it first stalled (2), leading to the triplication of the red-highlighted region (Ambroziak et al., 2015). 

 

Colon cancer 

Microarray analysis revealed copy number loss in 24 

of 98 colon cancers and different PARK2 somatic 

point mutations in 2 colon cancer cells lines (Veeriah 

et al., 2010). Additionally, in 100 primary colorectal 

carcinomas, Poulogiannis et al. demonstrated by 

array comparative genomic hybridization that 33% 

show PARK2 copy number loss (Poulogiannis et al., 

2010). The PARK2 deletions are mostly focal, 

heterozygous, and show maximum incidence in 

exons 3 and 4. Deficiency in expression of PARK2 

is significantly associated also with adenomatous 

polyposis coli (APC) deficiency in human colorectal 

cancer. Moreover, in the same study, interbreeding 

of Park2 heterozygous knockout mice with 

Apc(Min) mice resulted in a dramatic acceleration of 

intestinal adenoma development and increased polyp 

multiplicity. 

Lung adenocarcinoma 

Somatic homozygous deletions of exon 2 of the 

PARK2 gene were found in 2 lung adenocarcinoma 

cell lines, Calu-3 and H-1573, suggesting that the 

loss of this locus and the resulting changes in its 

expression are involved in the development of the 

tumour (Cesari et al., 2003). Additional germline and 

somatic deletions were also reported by Iwakawa et 

al. in five patients with lung adenocarcinoma and in 

31/267 lung adenocarcinoma, indicating that somatic 

PARK2 mutations occur rarely in lung 

adenocarcinoma development, but germline 

mutations could contribute to tumour progression 

(Iwakawa et al., 2012). Very recently, Xiong et al. 

reported the PARK2 germline mutation c.823C>T 

(p.Arg275Trp) in a family with eight cases of 

lung cancer (Xiong et al., 2015). 

Ovarian Cancer 

Two different groups identified both PARK2 genetic 

alterations and downregulated expression in ovarian 

cancer. Cesari et al. detected two PARK2 truncating 

deletions in 3 of 20 ovarian tumour samples, 

supporting the hypothesis that hemizygous or 

homozygous deletions are responsible for the 

abnormal expression of PARK2 in tumour biopsies 

and tumour cell lines. They suggest that PARK2 may 

act as a tumour suppressor gene and may contribute 

to the initiation and/or progression of ovarian cancer 

(Cesari et al., 2003). Denison et al. found four cell 

lines and four primary tumours as heterozygous for 

the duplication or deletion of a Parkin exon. The 

analysis of Parkin protein expression revealed that 

most of the ovarian cancer cell lines and primary 

tumours had diminished or absent Parkin expression 

(Denison et al., 2003). 

Other malignancies 

Alterations or molecular defects involving the 

coding region of the gene (single nucleotide 

mutations, copy numbers, gene breakage), 

epigenetic mechanisms, the mRNA up or down 

regulation, the protein level and the abnormal 

splicing of PARK2 have been linked to a wide range 

of other human malignancies (i.e. acute 

lymphoblastic leukemia, chronic myeloid leukemia, 

clear cell renal cell carcinoma, hepatocellular 

carcinoma, head and neck squamous cell carcinoma, 

gastric cancer, pancreatic adenocarcinoma, breast 

cancer, bladder urothelial cancer, thyroid cancer, 

adenoid cystic carcinoma) (Xu et al., 2014). 
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Breakpoints 
PARK2 belongs to the family of extremely large 

human genes and is located within FRA6E, one of 

the most unstable common fragile sites (CFSs) of the 

human genome. CFSs are intrinsically difficult to 

replicate, and are known to play a major role in 

carcinogenesis. Some factors have been considered 

to contribute to instabilities, including late-

replicating genomic regions, high AT content, 

flexible DNA sequences or regions enriched in 

repetitive elements. The exact size of the region of 

instability of FRA6E is not yet clear; however, it has 

been suggested that it may span even 9 Mb at 6q25.1-

6q26 and that the main fragility core is localised on 

the telomeric end, within the PARK2 gene sequence. 

The most common molecular mechanisms which 

seem predominantly involved in the rearrangement 

processes of this genomic region are non-

homologous end joining (NHEJ) and fork stalling 

and template switching (FoSTeS)/micro-homology 

mediated break-induced replication (MMBIR) 

(Figure 10) (Ambroziak et al., 2015). 
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