112 research outputs found

    Plastic Response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain-rate

    Full text link
    We analyze in details the atomistic response of a model amorphous material submitted to plastic shear in the athermal, quasistatic limit. After a linear stress-strain behavior, the system undergoes a noisy plastic flow. We show that the plastic flow is spatially heterogeneous. Two kinds of plastic events occur in the system: quadrupolar localized rearrangements, and shear bands. The analysis of the individual motion of a particle shows also two regimes: a hyper-diffusive regime followed by a diffusive regime, even at zero temperature

    Thermal gradient of in-flight polymer particles during cold spraying

    Get PDF
    International audienceThe manufacture of polymer coatings via the cold-spray process remains challenging owing to the viscoelastic-viscoplastic behavior exhibited by polymers. One crucial step to improve cold-spray polymer coating is to determine the particles' thermal history during their flight from inside the nozzle to their impact on the substrate. In this study, we propose estimating the velocity and temperature of an isolated polymer particle traveling through a nozzle with a sharp change in its cross-section. The preliminary results show that the geometric discontinuity constricts the flow, thereby increasing the particle velocity. Moreover, a significant thermal gradient is expected inside the particle, which in turn leads to a gradient of mechanical properties of the polymeric particle during impact

    Autism genetic database (AGD): a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism is a highly heritable complex neurodevelopmental disorder, therefore identifying its genetic basis has been challenging. To date, numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism, but most discoveries either fail to be replicated or account for a small effect. Thus, in most cases the underlying causative genetic mechanisms are not fully understood. In the present work, the Autism Genetic Database (AGD) was developed as a literature-driven, web-based, and easy to access database designed with the aim of creating a comprehensive repository for all the currently reported genes and genomic copy number variations (CNVs) associated with autism in order to further facilitate the assessment of these autism susceptibility genetic factors.</p> <p>Description</p> <p>AGD is a relational database that organizes data resulting from exhaustive literature searches for reported susceptibility genes and CNVs associated with autism. Furthermore, genomic information about human fragile sites and noncoding RNAs was also downloaded and parsed from miRBase, snoRNA-LBME-db, piRNABank, and the MIT/ICBP siRNA database. A web client genome browser enables viewing of the features while a web client query tool provides access to more specific information for the features. When applicable, links to external databases including GenBank, PubMed, miRBase, snoRNA-LBME-db, piRNABank, and the MIT siRNA database are provided.</p> <p>Conclusion</p> <p>AGD comprises a comprehensive list of susceptibility genes and copy number variations reported to-date in association with autism, as well as all known human noncoding RNA genes and fragile sites. Such a unique and inclusive autism genetic database will facilitate the evaluation of autism susceptibility factors in relation to known human noncoding RNAs and fragile sites, impacting on human diseases. As a result, this new autism database offers a valuable tool for the research community to evaluate genetic findings for this complex multifactorial disorder in an integrated format. AGD provides a genome browser and a web based query client for conveniently selecting features of interest. Access to AGD is freely available at <url>http://wren.bcf.ku.edu/</url>.</p

    [MicroRNAs: biosynthesis: mechanisms of action and biological functions]

    No full text
    Polymer grafting of polystyrene (PS) on nitrogen-doped multiwall carbon nanotubes (CNx) was successfully obtained by a "grafting from" technique. The production method involves the immobilization of initiators, using wet chemistry, onto the nanotube surface, followed by an in situ surface-initiated polymerization. The polymer-grafting carbon nanotubes synthesis includes the free radical functionalization of CNx and the "controlled/living" Nitroxide Mediated Radical Polymerization (NMRP). The obtained products were studied using several microscopic techniques as scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS). The characterization also includes thermogravimetric analysis (TGA), Raman spectroscopy, infrared spectroscopy, and electron spin resonance (ESR), among others. The analyzed samples were also compared with solutions fabricated by physical blending of the polymer and CNx nanotubes. These results indicate that the nanotube radical functionalization, the chemical grafting, and the polymerization reaction were obtained over CNx when NMRP method was successfully used, giving rise to a uniform PS layer of several nanometers grafted on the outer surface of the CNx nanotubes. Several properties of the PS-grafted CNx nanotubes were also studied. It is shown that the production method leads to a narrower distribution of the external diameters. Moreover, their solubilization in organic solvents is greatly improved. Finally, the dispersion of PS-grafted CNx into a PS matrix is studied to determine the differences in filler dispersion and interfacial adhesion strength, in comparison with nanocomposites elaborated with as-produced CNx

    Thermally Stimulated Creep: a Theoretical Understanding of the Compensation Law

    No full text
    Experimental data from thermally stimulated techniques (either mechanical or electrical measurements) are often used to characterize polymeric materials. The very high values obtained for the apparent activation energy, associated with very short pre-exponential times, as well as the so-called “compensation law” have not yet been properly explained on a physical basis. The purpose of this work is to propose such an interpretation on the basis of a theoretical model already developed for the molecular mobility in amorphous polymers below and around TgT_{\rm g}
    • 

    corecore