8 research outputs found

    Terbium Medical Radioisotope Production: Laser Resonance Ionization Scheme Development

    Full text link
    Terbium (Tb) is a promising element for the theranostic approach in nuclear medicine. The new CERN-MEDICIS facility aims for production of its medical radioisotopes to support related R&D projects in biomedicine. The use of laser resonance ionization is essential to provide radioisotopic yields of highest quantity and quality, specifically regarding purity. This paper presents the results of preparation and characterization of a suitable two-step laser resonance ionization process for Tb. By resonance excitation via an auto-ionizing level, the high ionization efficiency of 53% was achieved. To simulate realistic production conditions for Tb radioisotopes, the influence of a surplus of Gd atoms, which is a typical target material for Tb generation, was considered, showing the necessity of radiochemical purification procedures before mass separation. Nevertheless, a 10-fold enhancement of the Tb ion beam using laser resonance ionization was observed even with Gd:Tb atomic ratio of 100:1. © Copyright © 2021 Gadelshin, Formento Cavaier, Haddad, Heinke, Stora, Studer, Weber and Wendt.This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission’s Horizon 2020 Programme under contract number 642889 MEDICIS-PROMED; by the German Federal Ministry of Education and Research under the consecutive projects 05P12UMCIA and 05P15UMCIA. It has been also partially supported by Equipex ARRONAX-Plus (ANR-11-EQPX-0004), Labex IRON (ANR-11-LABX-18-01), ISITE NExT (ANR-16-IDEX-0007)

    First laser ions at the CERN-MEDICIS facility

    Get PDF
    The CERN-MEDICIS facility aims to produce emerging medical radionuclides for the theranostics approach in nuclear medicine with mass separation of ion beams. To enhance the radioisotope yield and purity of collected samples, the resonance ionization laser ion source MELISSA was constructed, and provided the first laser ions at the facility in 2019. Several operational tests were accomplished to investigate its performance in preparation for the upcoming production of terbium radioisotopes, which are of particular interest for medical applications. © 2020, The Author(s).KU LeuvenHorizon 2020: 642889 MEDICIS-PROMED05P12UMCIA, 05P15UMCIAOpen Access funding provided by Projekt DEAL. We would like to acknowledge the help and assistance from the whole MEDICIS collaboration; from CERN-ISOLDE Technical and Physical groups. This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission’s Horizon 2020 Programme under contract number 642889 MEDICIS-PROMED; by the German Federal Ministry of Education and Research under the consecutive projects 05P12UMCIA and 05P15UMCIA; by the Research Foundation Flanders FWO (Belgium) and by a KU Leuven START grant

    MELISSA: Laser ion source setup at CERN-MEDICIS facility. Blueprint

    Full text link
    The Resonance Ionization Laser Ion Source (RILIS) has become an essential feature of many radioactive ion beam facilities worldwide since it offers an unmatched combination of efficiency and selectivity in the production of ion beams of many different chemical elements. In 2019, the laser ion source setup MELISSA is going to be established at the CERN-MEDICIS facility, based on the experience of the workgroup LARISSA of the University Mainz and CERN ISOLDE RILIS team. The purpose is to enhance the capability of the radioactive ion beam supply for end users by optimizing the yield and the purity of the final product. In this article, the blueprint of the laser ion source, as well as the key aspects of its development and operation are presented. © 2019 Elsevier B.V.This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission's Horizon 2020 Programme under contract number 642889 MEDICIS-PROMED; by a Research and Innovation Programme of the European Commission's Horizon 2020 under contract number 654002 (ENSAR2-RESIST); by a grant from the French National Agency for Research called “Investissements d'Avenir”, Equipex Arronax-Plus no. ANR-11-EQPX-0004 and Labex IRON no. ANR-11-LABX-18-01; by FWO-Vlaanderen (Belgium), and by a KU Leuven START Grant; by the German Federal Ministry of Education and Research under the consecutive projects 05P12UMCIA and 05P15UMCIA

    CERN-MEDICIS: A Unique Facility for the Production of Non-Conventional Radionuclides for the Medical Research

    No full text
    International audienceThe MEDICIS facility is a unique facility located at CERN dedicated to the production of non-conventional radionuclides for research and development in imaging, diagnostics and radiation therapy. It exploits in a Class A work sector, a dedicated isotope separator beam line, a target irradiation station at the 1.4 GeV Proton Synchroton Booster (PSB) and receives activated targets from external institutes during CERN Long Shut-Downs. The target is heated up at high temperatures to allow for the diffusion and effusion of the atoms out of the target that are subsequently ionized. The ions are accelerated and sent through an off-line mass separator. The radionuclide of interest is extracted through mass separation and implanted into a thin metallic collection foil. After collection, the batch is prepared to be dispatched to a research center. In the near-future, the radiochemistry process will also be performed in MEDICIS. Since its commissioning in December 2017, the facility has provided novel radionuclides such as Tb-149, Tb-155, Tm-165, Er-169 and Yb-175 with high specific activity, some for the first time, to European research institutes part of the collaboration. (JACoW

    ISOLDE PROGRAMME

    No full text
    The experiments aim at a broad exploration of the properties of atomic nuclei far away from the region of beta stability. Furthermore, the unique radioactive beams of over 60~elements produced at the on-line isotope separators ISOLDE-2 and ISOLDE-3 are used in a wide programme of atomic, solid state and surface physics. Around 300 scientists are involved in the project, coming from about 70 laboratories. \\ \\ The electromagnetic isotope separators are connected on-line with their production targets in the extracted 600 MeV proton or 910~MeV Helium-3 beam of the Synchro-Cyclotron. Secondary beams of radioactive isotopes are available at the facility in intensities of 10$^
    corecore