3,113 research outputs found

    The Reactivity of MgB2 with Common Substrate and Electronic Materials

    Full text link
    The reactivity of MgB2 with powdered forms of common substrate and electronic materials is reported. Reaction temperatures between 600 C and 800 C, encompassing the range commonly employed in thin-film fabrication, were studied. The materials tested for reactivity were ZrO2, yttria stabilized zirconia (YSZ), MgO, Al2O3, SiO2, SrTiO3, TiN, TaN, AlN, Si, and SiC. At 600 C, MgB2 reacted only with SiO2 and Si. At 800 C, however, reactions were observed for MgB2 with Al2O3, SiO2, Si, SiC, and SrTiO3. The Tc of MgB2 decreased in the reactions with SiC and Al2O3.Comment: 5 figure

    Evolution of magnetic fluctuations through the Fe-induced paramagnetic to ferromagnetic transition in Cr2_2B

    Full text link
    In itinerant ferromagnets, the quenched disorder is predicted to dramatically affect the ferromagnetic to paramagnetic quantum phase transition driven by external control parameters at zero temperature. Here we report a study on Fe-doped Cr2_2B, which, starting from the paramagnetic parent, orders ferromagnetically for Fe-doping concentrations xx larger than xc=2.5x_{\rm c}=2.5\%. In parent Cr2_2B, 11^{11}B nuclear magnetic resonance data reveal the presence of both ferromagnetic and antiferromagnetic fluctuations. The latter are suppressed with Fe-doping, before the ferromagnetic ones finally prevail for x>xcx>x_{\rm c}. Indications for non-Fermi liquid behavior, usually associated with the proximity of a quantum critical point, were found for all samples, including undoped Cr2_2B. The sharpness of the ferromagnetic-like transition changes on moving away from xcx_{\rm c}, indicating significant changes in the nature of the magnetic transitions in the vicinity of the quantum critical point. Our data provide constraints for understanding quantum phase transitions in itinerant ferromagnets in the limit of weak quenched disorder.Comment: 8 pages, 7 figure

    Lone Pair Effect, Structural Distortions and Potential for Superconductivity in Tl Perovskites

    Full text link
    Drawing the analogy to BaBiO3, we investigate via ab-initio electronic structure calculations potential new superconductors of the type ATlX3 with A = Rb, Cs and X = F, Cl, and Br, with a particular emphasis on RbTlCl3. Based on chemical reasoning, supported by the calculations, we show that Tl-based perovskites have structural and charge instabilities driven by the lone pair effect, similar to the case of BaBiO3, effectively becoming A2Tl1+Tl3+X6. We find that upon hole doping of RbTlCl3, structures without Tl1+, Tl3+ charge disproportionation become more stable, although the ideal cubic perovskite, often viewed as the best host for superconductivity, should not be the most stable phase in the system. The known superconductor (Sr,K)BiO3 and hole doped RbTlCl3, predicted to be most stable in the same tetragonal structure, display highly analogous calculated electronic band structures.Comment: 5 pages, 5 figure

    (13)C NMR investigation of the superconductor MgCNi_3 up to 800K

    Full text link
    We report (13)C NMR characterization of the new superconductor MgCNi_3 (He et al., Nature (411), 54 (2001)). We found that both the uniform spin susceptibility and the spin fluctuations show a strong enhancement with decreasing temperature, and saturate below ~50K and ~20K respectively. The nuclear spin-lattice relaxation rate 1/(13)T_1T exhibits typical behaviour for isotropic s-wave superconductivity with a coherence peak below Tc=7.0K that grows with decreasing magnetic field.Comment: Accepted for publication in Physical Review Letter

    Therapeutic approaches with intravitreal injections in geographic atrophy secondary to age-related macular degeneration: current drugs and potential molecules

    Get PDF
    The present review focuses on recent clinical trials that analyze the efficacy of intravitreal therapeutic agents for the treatment of dry age-related macular degeneration (AMD), such as neuroprotective drugs, and complement inhibitors, also called immunomodulatory or anti-inflammatory agents. A systematic literature search was performed to identify randomized controlled trials published prior to January 2019. Patients affected by dry AMD treated with intravitreal therapeutic agents were included. Changes in the correct visual acuity and reduction in geographic atrophy progression were evaluated. Several new drugs have shown promising results, including those targeting the complement cascade and neuroprotective agents. The potential action of the two groups of drugs is to block complement cascade upregulation of immunomodulating agents, and to prevent the degeneration and apoptosis of ganglion cells for the neuroprotectors, respectively. Our analysis indicates that finding treatments for dry AMD will require continued collaboration among researchers to identify additional molecular targets and to fully interrogate the utility of pluripotent stem cells for personalized therapy

    Insights on star formation histories and physical properties of 1.2≤z≲41.2 \leq z \lesssim 4 Herschel-detected galaxies

    Get PDF
    We test the impact of using variable star forming histories (SFHs) and the use of the IR luminosity (LIR) as a constrain on the physical parameters of high redshift dusty star-forming galaxies. We explore in particular the stellar properties of galaxies in relation with their location on the SFR-M* diagram. We perform SED fitting of the UV-NIR and FIR emissions of a large sample of GOODS-Herschel galaxies, for which rich multi-wavelength observations are available. We test different SFHs and imposing energy conservation in the SED fitting process, to face issues like the age-extinction degeneracy and produce SEDs consistent with observations. Our models work well for the majority of the sample, with the notable exception of the high LIR end, for which we have indications that our simple energy conservation approach cannot hold true. We find trends in the SFHs fitting our sources depending on stellar mass M* and z. Trends also emerge in the characteristic timescales of the SED models depending on the location on the SFR-M* diagram. We show that whilst using the same available observational data, we can produce galaxies less star-forming than usually inferred, if we allow declining SFHs, while properly reproducing their observables. These sources can be post-starbursts undergoing quenching, and their SFRs are potentially overestimated if inferred from their LIR. Fitting without the IR constrain leads to a strong preference for declining SFHs, while its inclusion increases the preference of rising SFHs, more so at high z, in tentative agreement with the cosmic star formation history. Keeping in mind that the sample is biased towards high LIR, the evolution shaped by our model appears as both bursty (initially) and steady-lasting (later on). The global SFH of the sample follows the cosmic SFH with a small scatter, and is compatible with the "downsizing" scenario of galaxy evolution.Comment: 28 pages, 26 figures, one appendix, Accepted for publication in Astronomy & Astrophysic
    • …
    corecore