4 research outputs found

    Enhanced growth rate of atmospheric particles from sulfuric acid

    Get PDF
    In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (<10 nm) from sulfuric acid remain poorly measured. Therefore, the effect of stabilizing bases, the contribution of ions and the impact of attractive forces on molecular collisions are under debate. Here, we present precise growth rate measurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performed under atmospheric conditions in the CERN (European Organization for Nuclear Research) CLOUD chamber. Our results show that the evaporation of sulfuric acid particles above 2 nm is negligible, and growth proceeds kinetically even at low ammonia concentrations. The experimental growth rates exceed the hard-sphere kinetic limit for the condensation of sulfuric acid. We demonstrate that this results from van der Waals forces between the vapour molecules and particles and disentangle it from charge–dipole interactions. The magnitude of the enhancement depends on the assumed particle hydration and collision kinetics but is increasingly important at smaller sizes, resulting in a steep rise in the observed growth rates with decreasing size. Including the experimental results in a global model, we find that the enhanced growth rate of sulfuric acid particles increases the predicted particle number concentrations in the upper free troposphere by more than 50 %

    Application of a Thermal Desorption-Differential Mobility Analyzer (TD-DMA) coupled to a nitrate chemical ionization-atmospheric pressure interface-time-of-flight (CI-APi-TOF) for measuring nanoparticles at the CLOUD Chamber at CERN

    No full text
    Atmospheric particles play an important role in the radiative balance of the Earth, as well as they affect human health and air quality. Hence, the chemical characterization constitutes a crucial task to determinate their properties, sources and fate. Particularly, the analysis of nanoparticles (d<100 nm) represents an analytical challenge, since these particles are abundant in number but have very little mass. This accumulative thesis focuses on the chemical characterization of nanoparticles, performed in both laboratory and field studies. Here, I present four manuscripts, two of which are my main project as a lead author. The first manuscript (Caudillo et al., 2021) focuses on the gas and the particle phase originated from biogenic precursor gases (α-pinene and isoprene). The experiments were performed in the CLOUD chamber at CERN to simulate pure biogenic new particle formation. Both gas and particle phases are measured with a nitrate CI-APi-TOF mass spectrometer, while the TD-DMA is coupled to it for particle-phase measurements, this setup allows a direct comparison as both measurements use the identical chemical ionization and detector. This study demonstrates the suitability of the TD-DMA for measuring newly formed nanoparticles and it confirms that isoprene suppresses new particle formation but contributes to the growth of newly formed particles. The second manuscript (Caudillo et al., 2022) presents an intercomparison of four different techniques (including the TD-DMA) for measuring the chemical composition of SOA nanoparticles. The measurements were conducted in the CLOUD chamber. The intercomparison was done by contrasting the observed chemical composition, the calculated volatility, and the thermal desorption behavior (for the thermal desorption techniques). The methods generally agreed on the most important compounds that are found in the nanoparticles. However, they did see different parts of the organic spectrum. Potential explanations for these differences are suggested. The third manuscript (Ungeheuer al., 2022) presents both laboratory and ambient measurements to investigate the ability of lubricant oil to form new particles. These new particles are an important source of ultrafine particles in the areas nearby large airports. The ambient measurements were performed downwind of Frankfurt International Airport, and it was found that the fraction of lubricant oil is largest in the smallest particles. In the laboratory, the main finding was that evaporated lubricant oil nucleates and forms new particles rapidly. The results suggest that nucleation of lubricant oil and subsequent particle growth can occur in the cooling exhaust plumes of aircraft-turbofans. The fourth manuscript (Wang et al., 2022) is a new particle formation study in the CLOUD chamber at CERN. This study shows that nitric acid, sulfuric acid, and ammonia interact synergistically and rapidly form particles under upper free tropospheric conditions. These particles can grow by condensation (driven by the availability of ammonia) up to CCN sizes and INP particles. The ability of these particles to act as a CCN and INP was also investigated and it was found to be as efficient as for desert dust. This mechanism constitutes an important finding and it can account for previous observations of high concentrations of ammonia and ammonium nitrate over the Asia monsoon region

    Rapid growth of new atmospheric particles by nitric acid and ammonia condensation

    Get PDF
    A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog, but how it occurs in cities is often puzzling. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms
    corecore