1,691 research outputs found

    ENHANCED SURFACE INTEGRITY WITH THERMALLY STABLE RESIDUAL STRESS FIELDS AND NANOSTRUCTURES IN CRYOGENIC PROCESSING OF TITANIUM ALLOY TI-6AL-4V

    Get PDF
    Burnishing is a chipless finishing process used to improve surface integrity by severe plastic deformation (SPD) of surface asperities. As surface integrity in large measure defines the functional performance and fatigue life of aerospace alloys, burnishing is thus a means of increasing the fatigue life of critical components, such as turbine and compressor blades in gas turbine engines. Therefore, the primary objective of this dissertation is to characterize the burnishing-induced surface integrity of Ti-6Al-4V alloy in terms of the implemented processing parameters. As the impact of cooling mechanisms on surface integrity from SPD processing is largely unexplored, a particular emphasis was placed upon evaluating the influence of cryogenic cooling with liquid nitrogen in comparison to more conventional methodologies. Analysis of numerical and experimental results reveals that burnishing facilitates grain refinement via continuous dynamic recrystallization. Application of LN2 during SPD processing of Ti-6Al-4V alloy suppresses the growth of new grains, leading to the formation of near-surface nanostructures which exhibit increased microhardness and compressive residual stress fields. This is particularly true in cryogenic multipass burnishing, where successive tool passes utilizing lower working pressures generate thermally stable work hardened surface layers, uniform nano-level surface finishes, and significantly deeper layers of compressive residual stresses

    The Role of Mathematical Modeling in Designing and Evaluating Antimicrobial Stewardship Programs

    Get PDF
    Antimicrobial agent effectiveness continues to be threatened by the rise and spread of pathogen strains that exhibit drug resistance. This challenge is most acute in healthcare facilities where the well-established connection between resistance and sub-optimal antimicrobial use has prompted the creation of antimicrobial stewardship programs (ASPs). Mathematical models offer tremendous potential for serving as an alternative to controlled human experimentation for assessing the effectiveness of ASPs. Models can simulate controlled randomized experiments between groups of virtual patients, some treated with the ASP measure under investigation, and some without. By removing the limitations inherent in human experimentation, including health risks, study cohort size, possible number of replicates, and effective study duration, model simulations can provide valuable information to inform decisions regarding the design of new ASPs, as well as evaluation and improvement of existing ASPs. To date, the potential of mathematical modeling methods in evaluating ASPs is largely untapped, and much work remains to be done to leverage this potential

    The Role of Mathematical Modeling in Designing and Evaluating Antimicrobial Stewardship Programs

    Get PDF
    Antimicrobial agent effectiveness continues to be threatened by the rise and spread of pathogen strains that exhibit drug resistance. This challenge is most acute in healthcare facilities where the well-established connection between resistance and suboptimal antimicrobial use has prompted the creation of antimicrobial stewardship programs (ASPs). Mathematical models offer tremendous potential for serving as an alternative to controlled human experimentation for assessing the effectiveness of ASPs. Models can simulate controlled randomized experiments between groups of virtual patients, some treated with the ASP measure under investigation, and some without. By removing the limitations inherent in human experimentation, including health risks, study cohort size, possible number of replicates, and effective study duration, model simulations can provide valuable information to inform decisions regarding the design of new ASPs, as well as evaluation and improvement of existing ASPs. To date, the potential of mathematical modeling methods in evaluating ASPs is largely untapped and much work remains to be done to leverage this potential

    High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    Get PDF
    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions

    Environmental Performance Analysis of Solid Freedom Fabrication Processes

    Get PDF
    This paper presents a method for analyzing the environmental performance of solid freeform fabrication (SFF) processes. In this method, each process is divided into life phases. Environmental effects of every process phase are then analyzed and evaluated based on the environmental and resource management data. These effects are combined to obtain the environmental performance of the process. The analysis of the environmental performance of SFF processes considers the characteristics of SFF technology, includes material, energy consumption, processes wastes, and disposal. Case studies for three typical SFF processes: stereolithography (SL); selective laser sintering (SLS); and fused deposition modeling (FDM) are presented to illustrate this method

    Lifecycle Analysis for Environmentally Conscious Solid Freeform Manufacturing

    Get PDF
    A lifecycle based process model for analyzing the environmental performance of SFM processes and SFM based rapid tooling processes is presented in this paper. The process environmental performance assessment model considers material, energy and disposal scenarios. The material use, process parameters (e.g. scanning speed) and power use can affect the environmental consequence of a process when material resource, energy, human health and environmental damage are taken into account. The presented method is applied to the SLA process and two SLA based rapid tooling processes. The method can be used to compare different rapid prototyping (RP) and RT processes in terms of their environmental friendliness and for further multi-objective decision makin

    Circular orbits and spin in black-hole initial data

    Get PDF
    The construction of initial data for black-hole binaries usually involves the choice of free parameters that define the spins of the black holes and essentially the eccentricity of the orbit. Such parameters must be chosen carefully to yield initial data with the desired physical properties. In this paper, we examine these choices in detail for the quasiequilibrium method coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we compare two independent criteria for choosing the orbital frequency, the "Komar-mass condition" and the "effective-potential method," and find excellent agreement. Second, we implement quasi-local measures of the spin of the individual holes, calibrate these with corotating binaries, and revisit the construction of non-spinning black hole binaries. Higher-order effects, beyond those considered in earlier work, turn out to be important. Without those, supposedly non-spinning black holes have appreciable quasi-local spin; furthermore, the Komar-mass condition and effective potential method agree only when these higher-order effects are taken into account. We compute a new sequence of quasi-circular orbits for non-spinning black-hole binaries, and determine the innermost stable circular orbit of this sequence.Comment: 24 pages, 17 figures, accepted for publication in Physical Review D, revtex4; Fixed error in computing proper separation and updated figures and tables accordingly, added reference to Sec. IV.A, fixed minor error in Sec. IV.B, added new data to Tables IV and V, fixed 1 reference, fixed error in Eq. (A7b), included minor changes from PRD editin

    Satellite laser ranging work at the Goddard Space Flight Center

    Get PDF
    Laser ranging systems, their range and accuracy capabilities, and planned improvements for future systems are discussed, the systems include one fixed and two mobile lasers ranging systems. They have demonstrated better than 10 cm accuracy both on a carefully surveyed ground range and in regular satellite ranging operations. They are capable of ranging to all currently launched retroreflector equipped satellites with the exception of Timation III. A third mobile system is discussed which will be accurate to better than 5 cm and will be capable of ranging to distant satellites such as Timation III and LAGEOS
    • ā€¦
    corecore