17 research outputs found

    Nesting Biology and Fungiculture of the Fungus-Growing Ant, Mycetagroicus cerradensis: New Light on the Origin of Higher Attine Agriculture

    Get PDF
    The genus Mycetagroicus is perhaps the least known of all fungus-growing ant genera, having been first described in 2001 from museum specimens. A recent molecular phylogenetic analysis of the fungus-growing ants demonstrated that Mycetagroicus is the sister to all higher attine ants (Trachymyrmex, Sericomyrmex, Acromyrmex, Pseudoatta, and Atta), making it of extreme importance for understanding the transition between lower and higher attine agriculture. Four nests of Mycetagroicus cerradensis near Uberlñndia, Minas Gerais, Brazil were excavated, and fungus chambers for one were located at a depth of 3.5 meters. Based on its lack of gongylidia (hyphal-tip swellings typical of higher attine cultivars), and a phylogenetic analysis of the ITS rDNA gene region, M. cerradensis cultivates a lower attine fungus in Clade 2 of lower attine (G3) fungi. This finding refines a previous estimate for the origin of higher attine agriculture, an event that can now be dated at approximately 21–25 mya in the ancestor of extant species of Trachymyrmex and Sericomyrmex

    Dynamics of the Leaf-Litter Arthropod Fauna Following Fire in a Neotropical Woodland Savanna

    Get PDF
    Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of only 1–2 years may jeopardize the long-term conservation of litter arthropod communities

    Data from: The molecular phylogenetics of Trachymyrmex ants and their fungal cultivars provide insights into the origin and co-evolutionary history of 'higher-attine' ant agriculture

    No full text
    The fungus‐growing ants and their fungal cultivars constitute a classic example of a mutualism that has led to complex coevolutionary dynamics spanning c. 55–65 Ma. Of the five agricultural systems practised by fungus‐growing ants, higher‐attine agriculture, of which leaf‐cutter agriculture is a derived subset, remains poorly understood despite its relevance to ecosystem function and human agriculture across the Neotropics and parts of North America. Among the ants practising higher‐attine agriculture, the genus Trachymyrmex Forel, as currently defined, shares most‐recent common ancestors with both the leaf‐cutter ants and the higher‐attine genera Sericomyrmex Mayr and Xerolitor Sosa‐Calvo et al. Although previous molecular‐phylogenetic studies have suggested that Trachymyrmex is a paraphyletic grade, until now insufficient taxon sampling has prevented a full investigation of the evolutionary history of this group and limited the possibility of resolving its taxonomy. Here we describe the results of phylogenetic analyses of 38 Trachymyrmex species, including 27 of the 49 described species and at least 11 new species, using four nuclear markers, as well as phylogenetic analyses of the fungi cultivated by 23 species of Trachymyrmex using two markers. We generated new genetic data for 112 ants (402 new gene sequences) and 95 fungi (153 new gene sequences). Our results corroborate previous findings that Trachymyrmex, as currently defined, is paraphyletic. We propose recognizing two new genera, Mycetomoellerius gen.n. and Paratrachymyrmex gen.n., and restricting the continued use of Trachymyrmex to the clade of nine largely North American species that contains the type species [Trachymyrmex septentrionalis (McCook)] and that is the sister group of the leaf‐cutting ants. Our fungal cultivar phylogeny generally corroborates previously observed broad patterns of ant–fungus association, but it also reveals further violations of those patterns. Higher‐attine fungi are divided into two groups: (i) the single species Leucoagaricus gongylophorus (Möller); and (ii) its sister clade, consisting of multiple species, recently referred to as Leucoagaricus Singer ‘clade B’. Our phylogeny indicates that, although most non‐leaf‐cutting higher‐attine ants typically cultivate species in clade B, some species cultivate L. gongylophorus, whereas still others cultivate fungi typically associated with lower‐attine agriculture. This indicates that the attine agricultural systems, which are currently defined by associations between ants and fungi, are not entirely congruent with ant and fungal phylogenies. They may, however, be correlated with as yet poorly understood biological traits of the ants and/or of their microbiomes

    Abundance and diversity of arthropods in litter transplanted into burned and unburned sites.

    No full text
    <p>(A) Number of arthropod taxa, (B) total abundance of arthropods, (C–I) abundance of individual taxa, and (J) species richness of ants in litter transplanted into burned (filled symbols) and unburned sites (open symbols), 45 to 145 days after transplant. The litter transplant experiment started ca. 2.5 months post-fire. Values represent mean numbers (±SE) per m<sup>2</sup>. Data from different litter types were combined.</p

    Effect of fire and time since fire on the composition of leaf-litter arthropod communities.

    No full text
    <p>(A) NMDS ordination of burned and unburned sites based on the ordinal-level composition of the litter arthropod fauna (relative abundances of different arthropod taxa). (B) NMDS ordination of burned and unburned sites based on the species composition of litter-dwelling ants (relative frequencies of different species). Number near symbols represent the number of months elapsed since the fire event.</p
    corecore