5 research outputs found

    A direct interaction between two Restless Legs Syndrome predisposing genes : MEIS1 and SKOR1

    Get PDF
    Restless Legs syndrome (RLS) is a common sleep disorder for which the genetic contribution remains poorly explained. In 2007, the frst large scale genome wide association study (GWAS) identifed three genomic regions associated with RLS. MEIS1, BTBD9 and MAP2K5/SKOR1 are the only known genes located within these loci and their association with RLS was subsequently confrmed in a number of follow up GWAS. Following this fnding, our group reported the MEIS1 risk haplotype to be associated with its decreased expression at the mRNA and protein levels. Here we report the efect of the risk variants of the three other genes strongly associated with RLS. While these variants had no efect on the mRNA levels of the genes harboring them, we fnd that the homeobox transcription factor MEIS1 positively regulates the expression of the transcription co-repressor SKOR1. This regulation appears mediated through the binding of MEIS1 at two specifc sites located in the SKOR1 promoter region and is modifed by an RLS associated SNP in the promoter region of the gene. Our fndings directly link MEIS1 and SKOR1, two signifcantly associated genes with RLS and also prioritize SKOR1 over MAP2K5 in the RLS associated intergenic region of MAP2K5/SKOR1 found by GWAS

    Sirtuin inhibition protects from the polyalanine muscular dystrophy protein PABPN1

    No full text
    Oculopharyngeal muscular dystrophy (OPMD) is caused by polyalanine expansion in nuclear protein PABPN1 [poly(A) binding protein nuclear 1] and characterized by muscle degeneration. Druggable modifiers of proteotoxicity in degenerative diseases, notably the longevity modulators sirtuins, may constitute useful therapeutic targets. However, the modifiers of mutant PABPN1 are unknown. Here, we report that longevity and cell metabolism modifiers modulate mutant PABPN1 toxicity in the muscle cell. Using PABPN1 nematodes that show muscle cell degeneration and abnormal motility, we found that increased dosage of the sirtuin and deacetylase sir-2.1/SIRT1 exacerbated muscle pathology, an effect dependent on the transcription factor daf-16/FoxO and fuel sensor aak-2/AMPK (AMP-activated protein kinase), while null mutants of sir-2.1, daf-16 and aak-2 were protective. Consistently, the Sir2 inhibitor sirtinol was protective, whereas the Sir2 and AMPK activator resveratrol was detrimental. Furthermore, rescue by sirtinol was dependent on daf-16 and not aak-2, whereas aggravation by resveratrol was dependent on aak-2 and not daf-16. Finally, the survival of mammalian cells expressing mutant PABPN1 was promoted by sirtinol and decreased by resveratrol. Altogether, our data identify Sir2 and AMPK inhibition as therapeutic strategies for muscle protection in OPMD, extending the value of druggable proteins in cell maintenance networks to polyalanine diseases

    Mineral absorption is an enriched pathway in a brain region of restless legs syndrome patients with reduced MEIS1 expression.

    No full text
    Restless legs syndrome is a common complex disorder with different genetic and environmental risk factors. Here we used human cell lines to conduct an RNA-Seq study and observed how the gene showing the most significant association with RLS, MEIS1, acts as a regulator of the expression of many other genes. Some of the genes affected by its expression level are linked to pathways previously reported to be associated with RLS. We found that in cells where MEIS1 expression was either increased or prevented, mineral absorption is the principal dysregulated pathway. The mineral absorption pathway genes, HMOX1 and VDR are involved in iron metabolism and response to vitamin D, respectively. This shows a strong functional link to the known RLS pathways. We observed the same enrichment of the mineral absorption pathway in postmortem brain tissues of RLS patients showing a reduced expression of MEIS1. The expression of genes encoding metallothioneins (MTs) was observed to be dysregulated across the RNA-Seq datasets generated from both human cells and tissues. MTs are highly relevant to RLS as they bind intracellular metals, protect against oxidative stress and interact with ferritins which manage iron level in the central nervous system. Overall, our study suggests that in a subset of RLS patients, the contribution of MEIS1 appears to be associated to its downstream regulation of genes that are more directly involved in pathways that are relevant to RLS. While MTs have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's diseases, this is a first report to propose that they have a role in RLS

    Association of Essential Tremor With Novel Risk Loci: A Genome-Wide Association Study and Meta-analysis

    No full text
    Importance: Essential tremor (ET) is one of the most common movement disorders, affecting 5% of the general population older than 65 years. Common variants are thought to contribute toward susceptibility to ET, but no variants have been robustly identified. Objective: To identify common genetic factors associated with risk of ET. Design, setting, and participants: Case-control genome-wide association study. Inverse-variance meta-analysis was used to combine cohorts. Multicenter samples collected from European populations were collected from January 2010 to September 2019 as part of an ongoing study. Included patients were clinically diagnosed with or reported having ET. Control individuals were not diagnosed with or reported to have ET. Of 485 250 individuals, data for 483 054 passed data quality control and were used. Main outcomes and measures: Genotypes of common variants associated with risk of ET. Results: Of the 483 054 individuals included, there were 7177 with ET (3693 [51.46%] female; mean [SD] age, 62.66 [15.12] years), and 475 877 control individuals (253 785 [53.33%] female; mean [SD] age, 56.40 [17.6] years). Five independent genome-wide significant loci and were identified and were associated with approximately 18% of ET heritability. Functional analyses found significant enrichment in the cerebellar hemisphere, cerebellum, and axonogenesis pathways. Genetic correlation (r), which measures the degree of genetic overlap, revealed significant common variant overlap with Parkinson disease (r, 0.28; P = 2.38 × 10-8) and depression (r, 0.12; P = 9.78 × 10-4). A separate fine-mapping of transcriptome-wide association hits identified genes such as BACE2, LRRN2, DHRS13, and LINC00323 in disease-relevant brain regions, such as the cerebellum. Conclusions and relevance: The results of this genome-wide association study suggest that a portion of ET heritability can be explained by common genetic variation and can help identify new common genetic risk factors for ET
    corecore