6 research outputs found

    Phytoplankton composition from sPACE: Requirements, opportunities, and challenges

    Get PDF
    Ocean color satellites have provided a synoptic view of global phytoplankton for over 25 years through near surface measurements of the concentration of chlorophyll a. While remote sensing of ocean color has revolutionized our understanding of phytoplankton and their role in the oceanic and freshwater ecosystems, it is important to consider both total phytoplankton biomass and changes in phytoplankton community composition in order to fully understand the dynamics of the aquatic ecosystems. With the upcoming launch of NASA\u27s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission, we will be entering into a new era of global hyperspectral data, and with it, increased capabilities to monitor phytoplankton diversity from space. In this paper, we analyze the needs of the user community, review existing approaches for detecting phytoplankton community composition in situ and from space, and highlight the benefits that the PACE mission will bring. Using this three-pronged approach, we highlight the challenges and gaps to be addressed by the community going forward, while offering a vision of what global phytoplankton community composition will look like through the “eyes” of PACE

    Signaling Through MHC Class II Molecules Blocks CD95-Induced Apoptosis

    No full text

    First‐in‐human study of deucravacitinib: A selective, potent, allosteric small‐molecule inhibitor of tyrosine kinase 2

    No full text
    Abstract This randomized, double‐blind, single‐ and multiple‐ascending dose study assessed the pharmacokinetics (PKs), pharmacodynamics, and safety of deucravacitinib (Sotyktu™), a selective and potent small‐molecule inhibitor of tyrosine kinase 2, in 100 (75 active, 25 placebo) healthy volunteers (NCT02534636). Deucravacitinib was rapidly absorbed, with a half‐life of 8–15 h, and 1.4–1.9‐fold accumulation after multiple dosing. Deucravacitinib inhibited interleukin (IL)‐12/IL‐18‐induced interferon (IFN)γ production ex vivo in a dose‐ and concentration‐dependent manner. Following in vivo challenge with IFNα‐2a, deucravacitinib demonstrated dose‐dependent inhibition of lymphocyte count decreases and expression of 53 IFN‐regulated genes. There were no serious adverse events (AEs); the overall frequency of AEs was similar in the deucravacitinib (64%) and placebo (68%) groups. In this first‐in‐human study, deucravacitinib inhibited IL‐12/IL‐23 and type I IFN pathways in healthy volunteers, with favorable PK and safety profiles. Deucravacitinib is a promising therapeutic option for immune‐mediated diseases, including Crohn's disease, psoriasis, psoriatic arthritis, and systemic lupus erythematosus

    Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab

    No full text
    PurposeSepsis-associated immunosuppression increases hospital-acquired infection and viral reactivation risk. A key underlying mechanism is programmed cell death protein-1 (PD-1)-mediated T-cell function impairment. This is one of the first clinical safety and pharmacokinetics (PK) assessments of the anti-PD-1 antibody nivolumab and its effect on immune biomarkers in sepsis.MethodsRandomized, double-blind, parallel-group, Phase 1b study in 31 adults at 10 US hospital ICUs with sepsis diagnosed ≥ 24 h before study treatment, ≥ 1 organ dysfunction, and absolute lymphocyte count ≤ 1.1 × 103 cells/μL. Participants received one nivolumab dose [480 mg (n = 15) or 960 mg (n = 16)]; follow-up was 90 days. Primary endpoints were safety and PK parameters.ResultsTwelve deaths occurred [n = 6 per study arm; 40% (480 mg) and 37.5% (960 mg)]. Serious AEs occurred in eight participants [n = 1, 6.7% (480 mg); n = 7, 43.8% (960 mg)]. AEs considered by the investigator to be possibly drug-related and immune-mediated occurred in five participants [n = 2, 13.3% (480 mg); n = 3, 18.8% (960 mg)]. Mean ± SD terminal half-life was 14.7 ± 5.3 (480 mg) and 15.8 ± 7.9 (960 mg) days. All participants maintained > 90% receptor occupancy (RO) 28 days post-infusion. Median (Q1, Q3) mHLA-DR levels increased to 11,531 (6528, 19,495) and 11,449 (6225, 16,698) mAbs/cell in the 480- and 960-mg arms by day 14, respectively. Pro-inflammatory cytokine levels did not increase.ConclusionsIn this sepsis population, nivolumab administration did not result in unexpected safety findings or indicate any 'cytokine storm'. The PK profile maintained RO > 90% for ≥ 28 days. Further efficacy and safety studies are warranted. TRIAL REGISTRATION NUMBER (CLINICALTRIALS.GOV): NCT02960854
    corecore