226 research outputs found

    Community- and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal : virulence and antibiotic resistance

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Klebsiella pneumoniae is a clinically relevant pathogen and a frequent cause of hospital-acquired (HA) and community-acquired (CA) urinary tract infections (UTI). The increased resistance of this pathogen is leading to limited therapeutic options. To investigate the epidemiology, virulence, and antibiotic resistance profile of K. pneumoniae in urinary tract infections, we conducted a multicenter retrospective study for a total of 81 isolates (50 CA-UTI and 31 HA-UTI) in Portugal. The detection and characterization of resistance and virulence determinants were performed by molecular methods (PCR, PCR-based replicon typing, and multilocus sequence typing (MLST)). Out of 50 CA-UTI isolates, six (12.0%) carried β-lactamase enzymes, namely blaTEM-156 (n = 2), blaTEM-24 (n = 1), blaSHV-11 (n = 1), blaSHV-33 (n = 1), and blaCTX-M-15 (n = 1). All HA-UTI were extended-spectrum β-lactamase (ESBL) producers and had a multidrug resistant profile as compared to the CA-UTI isolates, which were mainly resistant to ciprofloxacin, levofloxacin, tigecycline, and fosfomycin. In conclusion, in contrast to community-acquired isolates, there is an overlap between virulence and multidrug resistance for hospital-acquired UTI K. pneumoniae pathogens. The study is the first to report different virulence characteristics for hospital and community K. pneumoniae pathogens, despite the production of β-lactamase and even with the presence of CTX-M-15 ESBL, a successful international ST15 clone, which were identified in both settings. This highlights that a focus on genomic surveillance should remain a priority in the hospital environment.This research was funded by the Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa (ULisboa).info:eu-repo/semantics/publishedVersio

    Virulence factors in carbapenem-resistant hypervirulent Klebsiella pneumoniae

    Get PDF
    Copyright © 2023 Mendes, Santos, Ramalho, Duarte and Caneiras. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Hypervirulence and carbapenem-resistant have emerged as two distinct evolutionary pathotypes of Klebsiella pneumoniae, with both reaching their epidemic success and posing a great threat to public health. However, as the boundaries separating these two pathotypes fade, we assist a worrisome convergence in certain high-risk clones, causing hospital outbreaks and challenging every therapeutic option available. To better understand the basic biology of these pathogens, this review aimed to describe the virulence factors and their distribution worldwide among carbapenem-resistant highly virulent or hypervirulent K. pneumoniae strains, as well as to understand the interplay of these virulence strains with the carbapenemase produced and the sequence type of such strains. As we witness a shift in healthcare settings where carbapenemresistant highly virulent or hypervirulent K. pneumoniae are beginning to emerge and replace classical K. pneumoniae strains, a better understanding of these strains is urgently needed for immediate and appropriate response.This research was partially funded by Fundação para a Ciência e a Tecnologia (FCT), under grant numbers UIDB/04295/2020 and UIDP/04295/2020. Moreover, CC acknowledges the funding provided by the “Research Award in Healthcare Associated Infections” granted by Escola Superior de Saúde Norte da Cruz Vermelha Portuguesa (2019) and by “BInov award,” an innovation award granted by the Southern Regional Section and Autonomous Regions of the Portuguese Pharmaceutical Society (2021). GM was supported by Fundação para a Ciência e Tecnologia (FCT), Portugal, through a Ph.D. Research Studentship Contract (Contrato de Bolsa de Investigação para Doutoramento 2020.07736.BD).info:eu-repo/semantics/publishedVersio

    Model predictive control of a single-phase five-level VIENNA rectifier

    Get PDF
    Power converters and control strategies are very vital for the increasing sustainability of the power grid targeting smart grids. In these circumstances, it is proposed a novel single-phase five-level (SP5L) VIENNA rectifier digitally controlled by a model predictive control (MPC) with fixed switching frequency, which can be useful for a variety of applications with a robust current tracking. The proposed SP5L VIENNA rectifier is an advancement of the classical three-level VIENNA rectifier, also contributing to preserve power quality, and exhibiting the advantage of operating with more voltage levels at the expense of few additional switching devices. The proposed topology is introduced and correlated with the classical solutions of active rectifiers. The operation principle is introduced and used to describe the MPC, which is given in detail, as well as the necessary modulation strategy. The results were obtained for a set of various operating conditions, both in terms of reference of current and grid-side voltage, as well as in steady-state and transient-state, proving the benefits of the proposed SP5L VIENNA rectifier and the accurate and precise use of the MPC to control the grid-side current.This work has been supported by FCT -Fundacao para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017, and by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT

    First outbreak of NDM-1-producing Klebsiella pneumoniae ST11 in a Portuguese hospital centre during the COVID-19 pandemic

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).New Delhi metallo-β-lactamase (NDM) carbapenemase has been considered a global threat due to its worldwide widespread in recent years. In Portugal, a very low number of infections with NDM-producing Enterobacterales has been reported. A total of 52 strains from 40 patients and 1 environmental sample isolated during COVID-19 pandemic were included in this study. Wholegenome sequencing (WGS) was performed on 20 carbapenemase-producing strains, including 17 NDM-1-producing Klebsiella pneumoniae ST11-KL105 lineage strains, one NDM-1-producing Escherichia coli ST58 strain and one KPC-3-producing K. pneumoniae ST147 strain, recovered from a total of 19 patients. Of interest, also one NDM-1-producing K. pneumoniae ST11-KL105 was collected from the hospital environment. Genome-wide phylogenetic analysis revealed an ongoing dissemination of NDM-1-producing K. pneumoniae ST11 strains (n = 18) with the same genetic features seen across multiple wards. Furthermore, the ST58 E. coli strain, collected from a patient rectal swab that was also colonised with a K. pneumoniae strain, also showed the IncFIA plasmid replicon and the blaNDM-1 gene (preceded by IS30 and followed by genes bleMBL, trpF, dsbC, cutA, groES and groEL). The blaNDM-1 is part of Tn125-like identical to those reported in Poland, Italy and India. The blaKPC-3 K. pneumoniae ST147-KL64 strain has the genetic environment Tn4401d isoform. In conclusion, herein we report the molecular epidemiology, resistome, virulome and mobilome of the first NDM-1 carbapenemase outbreak caused by K. pneumoniae ST11-KL105 lineage during the COVID-19 pandemic in Portugal. Moreover, the outbreak strains characterised included seventeen different patients (infected and colonised) and one environmental sample which also emphasises the role of commensal and hospital environment strains in the dissemination of the outbreak.This research was partially funded by Fundação para a Ciência e a Tecnologia (FCT), grant number UIDB/04295/2020 and UIDP/04295/2020. Moreover, Cátia Caneiras (C.C.) acknowledge the funding provided by the “Research Award in Healthcare-associated Infections” granted by Escola Superior de Saúde Norte da Cruz Vermelha Portuguesa (2019) and by “BInov award”, an Innovation award granted by Southern Regional and Autonomous Regions Section of the Portuguese Pharmaceutical Society(2021). Gabriel Mendes (G.M.) is supported by Fundação para a Ciência e Tecnologia (FCT), Portugal, through PhD Research Studentship Contract (Contrato de Bolsa de Investigação para Doutoramento 2020.07736.BD).info:eu-repo/semantics/publishedVersio

    Whole-genome sequencing enables molecular characterization of non-clonal group 258 high-risk clones (ST13, ST17, ST147 and ST307) among Carbapenem-resistant Klebsiella pneumoniae from a tertiary university hospital centre in Portugal

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).The carbapenem-resistant Enterobacterales (CRE) strains have been identified by the World Health Organization as critical priority pathogens in research and development of diagnostics, treatments, and vaccines. However, recent molecular information about carbapenem-resistant K. pneumoniae (CRK) epidemiology in Portugal is still scarce. Thus, this study aimed to provide the molecular epidemiology, resistome, and virulome of CRK clinical strains recovered from a tertiary care hospital centre (2019–2021) using polymerase chain reaction (PCR) and the advanced molecular technique whole-genome sequencing (WGS). PCR amplification of carbapenemase genes was performed in 437 carbapenem-resistant K. pneumoniae strains. The most frequent carbapenemases were: KPC-3 (42%), followed by OXA-181 (20%), GES-5 (0.2%), and NDM-1 (0.2%). Additionally, 10 strains (2%) coproduced KPC-3 and OXA-181, and 1 strain coproduced KPC-3 and OXA-48 (0.2%). The genomic population structure of 68 strains characterized by WGS demonstrated the ongoing dissemination of four main high-risk clones: ST13, ST17, ST147, and ST307, while no clones belonging to the European predominant clonal groups (CG15 and CG258) were found. Moreover, we describe one K. pneumoniae ST39-KL62 that coproduced the NDM-1 carbapenemase and the extended-spectrum beta-lactamase CTX-M-15, and one K. pneumoniae ST29-KL54 GES-5 and BEL-1 coproducer. Furthermore, a high prevalence of iron siderophores were present in all CRK strains, with several strains presenting both colibactin and the hypermucoviscosity phenotype. Thus, the data presented here highlight an uncommon molecular epidemiology pattern in Portugal when compared with most European countries, further supporting the emergence and dissemination of nonclonal group 258 hypervirulent multidrug high-risk clones and the need to promote in-depth hospital molecular surveillance studies.This research was partially funded by Fundação para a Ciência e a Tecnologia (FCT), under grant numbers UIDB/04295/2020 and UIDP/04295/2020. Moreover, Cátia Caneiras (C.C.) acknowledges the funding provided by the “Research Award in Healthcare Associated Infections” granted by Escola Superior de Saúde Norte da Cruz Vermelha Portuguesa (2019) and by “BInov award”, an innovation award granted by the Southern Regional Section and Autonomous Regions of the Portuguese Pharmaceutical Society (2021). Gabriel Mendes (G.M.) was supported by Fundação para a Ciência e Tecnologia (FCT), Portugal, through a PhD Research Studentship Contract (Contrato de Bolsa de Investigação para Doutoramento 2020.07736.BD).info:eu-repo/semantics/publishedVersio

    First description of Ceftazidime/Avibactam resistance in an ST13 KPC-70-producing Klebsiella pneumoniae strain from Portugal

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).The combination of ceftazidime/avibactam (CZA) is a novel β-lactam/β-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales. Emerging cases caused by CZA-resistant strains that produce variants of KPC genes have already been reported worldwide. However, to the best of our knowledge, no CZA-resistant strains were reported in Portugal. In September 2019, a K. pneumoniae CZA-resistant strain was collected from ascitic fluid at a surgery ward of a tertiary University Hospital Center in Lisboa, Portugal. The strain was resistant to ceftazidime/avibactam, as well as to ceftazidime, cefoxitin, gentamicin, amoxicillin/clavulanic acid, and ertapenem, being susceptible to imipenem and tigecycline. A hypermucoviscosity phenotype was confirmed by string test. Whole-genome sequencing (WGS) analysis revealed the presence of an ST13 KPC70-producing K. pneumoniae, a KPC-3 variant, differing in two amino-acid substitutions (D179Y and T263A). The D179Y mutation in the KPC Ω-loop region is the most common amino-acid substitution in KPC-2 and KPC-3, further leading to CZA resistance. The second mutation causes a KPC-70 variant in which threonine replaces alanine (T263A). The CZA-resistant strain showed the capsular locus KL3 and antigen locus O1v2. Other important virulence factors were identified: fimbrial adhesins type 1 and type 3, as well as the cluster of iron uptake systems aerobactin, enterobactin, salmochelin, and yersiniabactin included in integrative conjugative element 10 (ICEKp10) with the genotoxin colibactin cluster. Herein, we report the molecular characterization of the first hypervirulent CZA-resistant ST13 KPC-70-producing K. pneumoniae strain in Portugal. The emergence of CZA-resistant strains might pose a serious threat to public health and suggests an urgent need for enhanced clinical awareness and epidemiologic surveillance.This research was partially funded by the Fundação para a Ciência e a Tecnologia (FCT), grant number UIDB/04295/2020 and UIDP/04295/2020. Gabriel Mendes (G.M.) is supported by the Fundação para a Ciência e Tecnologia (FCT), Portugal, through a PhD Research Studentship Contract (Contrato de Bolsa de Investigação para Doutoramento 2020.07736.BD). Cátia Caneiras (C.C.) acknowledges the funding provided by the “Research Award in Healthcare Associated Infections” granted by the Escola Superior de Saúde Norte da Cruz Vermelha Portuguesa (2019) and by the “BInov award”, an innovation award granted by Southern Regional and Autonomous Regions Section of the Portuguese Pharmaceutical Society (2021).info:eu-repo/semantics/publishedVersio
    corecore