16 research outputs found

    Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression

    Get PDF
    BACKGROUND: Zinc plays important roles in maintaining normal function of the prostate and in development of prostate malignancy. It has been demonstrated that prostate malignant epithelial cells contain much less cellular zinc than the surrounding normal epithelial cells. However, the pathway(s) which leads to lower zinc accumulation in malignant prostate epithelial cells is poorly understood. In this study, the zinc homeostatic features of two human prostate epithelial cell lines (non-tumorigenic, RWPE1, and tumorigenic, RWPE2) were investigated. Effects of over-expression of ZIP1 in RWPE2 on cell proliferation and apoptosis were also studied. RESULTS: RWPE2 accumulated less intracellular zinc than RWPE1 due to the decreased zinc uptake activity. The mRNA expression of ZIP1 and ZIP3 in RWPE1 and RWPE2 was comparable. However, the protein expression of ZIP1 in RWPE2 was lower than that in RWPE1. ZIP3 was detected in a lysosomal compartment of RWPE2 while no ZIP3 was detected in the same compartment of RWPE1. Over-expression of ZIP1 in RWPE2 resulted in an elevation of intracellular zinc concentration and suppression of cell growth of RWPE2 due to the increased apoptosis. CONCLUSION: These findings suggest that tumorigenic prostate epithelial cells accumulated less intracellular zinc than non-tumorigenic prostate epithelial cells. The reduction in capacity for accumulation of intracellular zinc in tumorigenic prostate epithelial cells may be caused by the decrease in the ZIP1 protein expression and the intracellular redistribution of ZIP3 in RWPE2. RWPE1 and RWPE2 are excellent cellular models to study the association of intracellular zinc levels with prostate cancer progression

    Monitoring of white striping and wooden breast cases and impacts on quality of breast meat collected from commercial broilers ()

    Get PDF
    Objective This study aimed at investigating white striping (WS) and wooden breast (WB) cases in breast meat collected from commercial broilers. Methods A total of 183 breast samples were collected from male Ross 308 broilers slaughtered at the age of 6 weeks (n = 100) and 7 weeks (n = 83). The breasts were subjected to meat defect inspection, meat quality determination and histology evaluation. Results Of 183, 4 breasts from 6-week-old broilers were classified as non-defective while the others exhibited the WS lesion. Among the 6-week-old birds, the defective samples from the medium size birds (carcass weight ≀2.5 kg) showed mild to moderate WS degree with no altered meat quality. Some of the breasts from the 6-week-old birds with carcass weight above 2.5 kg exhibited WB in accompanied with the WS condition. Besides of a reduction of protein content, increases in collagen matter and pH values in the defective samples (p<0.05), no other impaired quality indices were detected within this group. All 7-week-old broilers yielded carcasses weighing above 2.5 kg and showed abnormal characteristics with progressive severity. The breasts affected with severe WS and WB showed the greatest cook loss, hardness, springiness and chewiness (p<0.05). Development of WB induced significantly increased drip loss in the samples (p<0.05). Histology indicated necrotic events in the defective myofibers. Based on logistic regression, increasing percent breast weight by one unit enhanced the chance of WS and WB development with advanced severity by 50.9% and 61.0%, respectively. Delayed slaughter age from 6 to 7 weeks increased the likelihood of obtaining increased WS severity by 56.3%. Conclusion Cases of WS and WB defects in Southeast Asia have been revealed. Despite few cases of the severe WS and WB, such abnormal conditions significantly impaired technological properties and nutritional quality of broiler breasts

    The Znt7-null mutation has sex dependent effects on the gut microbiota and goblet cell population in the mouse colon.

    No full text
    Cellular homeostasis of zinc, an essential element for living organisms, is tightly regulated by a family of zinc transporters. The zinc transporter 7, ZnT7, is highly expressed on the membrane of the Golgi complex of intestinal epithelial cells and goblet cells. It has previously been shown that Znt7 knockout leads to zinc deficiency and decreased weight gain in C57BL/6 mice on a defined diet. However, effects within the colon are unknown. Given the expression profile of Znt7, we set out to analyze the changes in mucin density and gut microbial composition in the mouse large intestine induced by Znt7 knockout. We fed a semi-purified diet containing 30 mg Zn/kg to Znt7-/- mice with their heterozygous and wild type littermates and found a sex specific effect on colonic mucin density, goblet cell number, and microbiome composition. In male mice Znt7 knockout led to increased goblet cell number and mucin density but had little effect on gut microbiome composition. However, in female mice Znt7 knockout was associated with decreased goblet cell number and mucin density, with increased proportions of the microbial taxa, Allobaculum, relative to wild type. The gut microbial composition was correlated with mucin density in both sexes. These findings suggest that a sex-specific relationship exists between zinc homeostasis, mucin production and the microbial community composition within the colon

    Trimethylamine N-Oxide Response to a Mixed Macronutrient Tolerance Test in a Cohort of Healthy United States Adults

    No full text
    Plasma trimethylamine n-oxide (TMAO) concentration increases in responses to feeding TMAO, choline, phosphatidylcholine, L-carnitine, and betaine but it is unknown whether concentrations change following a mixed macronutrient tolerance test (MMTT) with limited amounts of TMAO precursors. In this proof-of-concept study, we provided healthy female and male adults (n = 97) ranging in age (18–65 years) and BMI (18–44 kg/m2) a MMTT (60% fat, 25% sucrose; 42% of a standard 2000 kilo calorie diet) and recorded their metabolic response at fasting and at 30 min, 3 h, and 6 h postprandially. We quantified total exposure to TMAO (AUC-TMAO) and classified individuals by the blood draw at which they experienced their maximal TMAO concentration (TMAO-response groups). We related AUC-TMAO to the 16S rRNA microbiome, to two SNPs in the exons of the FMO3 gene (rs2266782, G>A, p.Glu158Lys; and rs2266780, A>G, p.Glu308Gly), and to a priori plasma metabolites. We observed varying TMAO responses (timing and magnitude) and identified a sex by age interaction such that AUC-TMAO increased with age in females but not in males (p-value = 0.0112). Few relationships between AUC-TMAO and the fecal microbiome and FMO3 genotype were identified. We observed a strong correlation between AUC-TMAO and TNF-α that depended on TMAO-response group. These findings promote precision nutrition and have important ramifications for the eating behavior of adults who could benefit from reducing TMAO exposure, and for understanding factors that generate plasma TMAO
    corecore