38 research outputs found

    Methods to Quantify Pharmacologically Induced Alterations in Motor Function in Human Incomplete SCI

    Get PDF
    Spinal cord injury (SCI) is a debilitating disorder, which produces profound deficits in volitional motor control. Following medical stabilization, recovery from SCI typically involves long term rehabilitation. While recovery of walking ability is a primary goal in many patients early after injury, those with a motor incomplete SCI, indicating partial preservation of volitional control, may have the sufficient residual descending pathways necessary to attain this goal. However, despite physical interventions, motor impairments including weakness, and the manifestation of abnormal involuntary reflex activity, called spasticity or spasms, are thought to contribute to reduced walking recovery. Doctrinaire thought suggests that remediation of this abnormal motor reflexes associated with SCI will produce functional benefits to the patient. For example, physicians and therapists will provide specific pharmacological or physical interventions directed towards reducing spasticity or spasms, although there continues to be little empirical data suggesting that these strategies improve walking ability

    Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Get PDF
    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked activation, indicated by eye muscle response. Our preliminary analyses showed that the skull tap elicited activation in medial frontal gyrus, superior temporal gyrus, postcentral gyrus, transverse temporal gyrus, anterior cingulate, and putamen. The auditory tone bursts elicited activation in medial frontal gyrus, superior temporal gyrus, superior frontal gyrus, precentral gyrus, inferior and superior parietal lobules. In line with our hypothesis, skull taps elicited a pattern of cortical activity closely similar to one elicited by auditory tone bursts. Further analysis will determine the extent to which the skull taps can replace the auditory tone stimulation in clinical and basic science vestibular assessments

    The effects of attractive vs. repulsive instructional cuing on balance performance

    Get PDF
    Abstract Background Torso-based vibrotactile feedback has been shown to improve postural performance during quiet and perturbed stance in healthy young and older adults and individuals with balance impairments. These systems typically include tactors distributed around the torso that are activated when body motion exceeds a predefined threshold. Users are instructed to “move away from the vibration”. However, recent studies have shown that in the absence of instructions, vibrotactile stimulation induces small (~1°) non-volitional responses in the direction of its application location. It was hypothesized that an attractive cuing strategy (i.e., “move toward the vibration”) could improve postural performance by leveraging this natural tendency. Findings Eight healthy older adults participated in two non-consecutive days of computerized dynamic posturography testing while wearing a vibrotactile feedback system comprised of an inertial measurement unit and four tactors that were activated in pairs when body motion exceeded 1° anteriorly or posteriorly. A crossover design was used. On each day participants performed 24 repetitions of Sensory Organization Test condition 5 (SOT5), three repetitions each of SOT 1–6, three repetitions of the Motor Control Test, and five repetitions of the Adaptation Test. Performance metrics included A/P RMS, Time-in-zone and 95 % CI Ellipse. Performance improved with both cuing strategies but participants performed better when using repulsive cues. However, the rate of improvement was greater for attractive versus repulsive cuing. Conclusions The results suggest that when the cutaneous signal is interpreted as an alarm, cognition overrides sensory information. Furthermore, although repulsive cues resulted in better performance, attractive cues may be as good, if not better, than repulsive cues following extended training.http://deepblue.lib.umich.edu/bitstream/2027.42/134532/1/12984_2016_Article_131.pd

    Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept

    Full text link
    Abstract Background Postural balance and gait training is important for treating persons with functional impairments, however current systems are generally not portable and are unable to train different types of movements. Methods This paper describes a proof-of-concept design of a configurable, wearable sensing and feedback system for real-time postural balance and gait training targeted for home-based treatments and other portable usage. Sensing and vibrotactile feedback are performed via eight distributed, wireless nodes or “Dots” (size: 22.5 × 20.5 × 15.0 mm, weight: 12.0 g) that can each be configured for sensing and/or feedback according to movement training requirements. In the first experiment, four healthy older adults were trained to reduce medial-lateral (M/L) trunk tilt while performing balance exercises. When trunk tilt deviated too far from vertical (estimated via a sensing Dot on the lower spine), vibrotactile feedback (via feedback Dots placed on the left and right sides of the lower torso) cued participants to move away from the vibration and back toward the vertical no feedback zone to correct their posture. A second experiment was conducted with the same wearable system to train six healthy older adults to alter their foot progression angle in real-time by internally or externally rotating their feet while walking. Foot progression angle was estimated via a sensing Dot adhered to the dorsal side of the foot, and vibrotactile feedback was provided via feedback Dots placed on the medial and lateral sides of the mid-shank cued participants to internally or externally rotate their foot away from vibration. Results In the first experiment, the wearable system enabled participants to significantly reduce trunk tilt and increase the amount of time inside the no feedback zone. In the second experiment, all participants were able to adopt new gait patterns of internal and external foot rotation within two minutes of real-time training with the wearable system. Conclusion These results suggest that the configurable, wearable sensing and feedback system is portable and effective for different types of real-time human movement training and thus may be suitable for home-based or clinic-based rehabilitation applications.https://deepblue.lib.umich.edu/bitstream/2027.42/138819/1/12984_2017_Article_313.pd

    Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study

    Full text link
    Abstract Background Sensory augmentation has been shown to improve postural stability during real-time balance applications. Limited long-term controlled studies have examined retention of balance improvements in healthy older adults after training with sensory augmentation has ceased. This pilot study aimed to assess the efficacy of long-term balance training with and without sensory augmentation among community-dwelling healthy older adults. Methods Twelve participants (four males, eight females; 75.6 ± 4.9 yrs) were randomly assigned to the experimental group (n = 6) or control group (n = 6). Participants trained in their homes for eight weeks, completing three 45-min exercise sessions per week using smart phone balance trainers that provided written, graphic, and video guidance, and monitored trunk sway. During each session, participants performed six repetitions of six exercises selected from five categories (static standing, compliant surface standing, weight shifting, modified center of gravity, and gait). The experimental group received vibrotactile sensory augmentation for four of the six repetitions per exercise via the smart phone balance trainers, while the control group performed exercises without sensory augmentation. The smart phone balance trainers sent exercise performance data to a physical therapist, who recommended exercises on a weekly basis. Balance performance was assessed using a battery of clinical balance tests (Activity Balance Confidence Scale, Sensory Organization Test, Mini Balance Evaluation Systems Test, Five Times Sit to Stand Test, Four Square Step Test, Functional Reach Test, Gait Speed Test, Timed Up and Go, and Timed Up and Go with Cognitive Task) before training, after four weeks of training, and after eight weeks of training. Results Participants in the experimental group were able to use vibrotactile sensory augmentation independently in their homes. After training, the experimental group had significantly greater improvements in Sensory Organization Test and Mini Balance Evaluation Systems Test scores than the control group. Significant improvement was also observed for Five Times Sit to Stand Test duration within the experimental group, but not in the control group. No significant improvements between the two groups were observed in the remaining clinical outcome measures. Conclusion The findings of this study support the use of sensory augmentation devices by community-dwelling healthy older adults as balance rehabilitation tools, and indicate feasibility of telerehabilitation therapy with reduced input from clinicians.https://deepblue.lib.umich.edu/bitstream/2027.42/140764/1/12984_2017_Article_339.pd

    A multifaceted quantitative validity assessment of laparoscopic surgical simulators

    No full text
    The objective of this work was to design an experimental surgical tool and data acquisition protocol to quantitatively measure surgeon motor behaviour in a human operating room (OR). We want to use expert OR behaviour data to evaluate the concurrent validity of two types of laparoscopic surgical simulators. Current training and evaluation methods are subjective and potentially unreliable, and surgical simulators have been recognized as potential objective training and measurement tools, even though their validity has not been quantitatively established. We compare surgeon motor behaviour in the OR to a ~50000virtualrealitysimulator,anda 50 000 virtual reality simulator, and a ~1 physical "orange" simulator. It is our contention that if expert behaviour in a simulator is the same as in the OR, then that simulator is a valid measurement tool. A standard laparoscopic surgical tool is instrumented with optical, magnetic, and force/torque sensors to create a hybrid system. We use the hybrid tool in a pilot study, to collect continuous kinematics and force/torque profiles in a human OR. We compare the position, velocity, acceleration, jerk, and force/torque profiles of two expert surgeons across analogous tasks in the three settings (OR, VR, and physical) using the Kolmogorov-Smirnov statistic. We find that intra- and intersubject differences between settings are small (D < 0.3), which indicates that experts exhibit the same motor behaviour in each setting. This also helps to validate our choice of performance measures and analysis method. However, we find larger intersetting expert differences (0.3 < D < 1) from the OR to simulators. We suspect that experts behave the same as each other in all settings, but that OR behaviour is considerably different from simulator behaviour. In other words, for this preliminary study we find that the VR and physical simulators both demonstrate poor performance validity.Applied Science, Faculty ofMechanical Engineering, Department ofGraduat

    Same behaviours, different reasons:what do patients with co-occurring anorexia and autism want from treatment?

    Get PDF
    Research suggests that up to one in four individuals with anorexia nervosa (AN) may be on the autistic spectrum, and that these autistic traits may not have been recognized or diagnosed prior to eating disorder (ED) treatment. Significantly, these heightened autistic traits are associated with poorer treatment outcomes, suggesting that treatment may need to be adapted for this population. The purpose of this study was to explore with people with AN on the autistic spectrum their experiences of ED treatment, and their views on what needs to be changed. Women with AN (n= 13), either with an autism diagnosis or presenting with clinically significant levels of autistic traits, were interviewed on their experiences of treatment and potential improvements. Interviews were analysed using thematic analysis. The findings suggest that this population experience unique needs associated with their autism that are not being met by standard ED treatments, and recommendations are made for potential future adaptations. Future research into a more systematic approach for treatment adaptations for this population, including education programmes for clinicians, could potentially lead to better treatment experiences.</p
    corecore