21 research outputs found

    Emergence of Large-Scale Cell Morphology and Movement from Local Actin Filament Growth Dynamics

    Get PDF
    Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged “canoe” shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features—cell shape, leading-edge shape, filamentous actin (F-actin) distribution, cell speed, and directional persistence—that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes—which had VASP highly enriched at their leading edges and migrated fast with straight trajectories—to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and behavior phenotypes as large-scale consequences of kinetic contributions of VASP to actin filament growth and protection from capping at the leading edge. This work shows that the local effects of actin-remodeling proteins on cytoskeletal dynamics and organization can manifest as global modifications of the shape and behavior of migrating cells and that mathematical modeling can elucidate these large-scale cell behaviors from knowledge of detailed multiscale protein interactions

    CIL:12087, Hypsophrys nicaraguensis, keratocyte. In Cell Image Library

    No full text

    CIL:12086, Hypsophrys nicaraguensis, keratocyte. In Cell Image Library

    No full text

    Listeria monocytogenes Actin-based Motility Varies Depending on Subcellular Location: A Kinematic Probe for Cytoarchitecture

    No full text
    Intracellular Listeria monocytogenes actin-based motility is characterized by significant individual variability, which can be influenced by cytoarchitecture. L. monocytogenes was used as a probe to transmit information about structural variation among subcellular domains defined by mitochondrial density. By analyzing the movement of a large population of L. monocytogenes in PtK2 cells, we found that mean speed and trajectory curvature were significantly larger for bacteria moving in mitochondria-containing domains (generally perinuclear) than for bacteria moving in mitochondria-free domains (generally peripheral). Analysis of bacteria that traversed both mitochondria-containing and mitochondria-free domains revealed that these motile differences were not intrinsic to bacteria themselves. Disruption of mitochondrial respiration did not affect bacterial mean speed, speed persistence, or trajectory curvature. In contrast, microtubule depolymerization lead to decreased mean speed per bacterium and increased mean speed persistence of L. monocytogenes moving in mitochondria-free domains compared with untreated cells. L. monocytogenes were also observed to physically collide with mitochondria and push them away from the bacterial path of motion, causing bacteria to slow down before rapidly resuming their speed. Our results show that subcellular domains along with microtubule depolymerization may influence the actin cytoskeleton to affect L. monocytogenes speed, speed persistence, and trajectory curvature

    Lignin depletion enhances the digestibility of cellulose in cultured xylem cells.

    Get PDF
    Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis, but realistic enough to capture the natural complexity of lignocellulose in the plant cell wall. Consequently, these cells represent a suitable model for analyzing native lignocellulose degradation

    Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Get PDF
    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production

    <i>Ct</i>CBM3-GFP labeling quantitatively reveals the rapid digestion of cellulose in pretreated cells.

    No full text
    <p>(A–D) Fluorescence images show representative xylem cells that were incubated in the absence or presence of cellulase and subsequently labeled with the cellulose-specific <i>Ct</i>CBM3-GFP probe. Untreated cells, either undigested (A) or digested with cellulase for 1 hour (B), qualitatively show similar fluorescence levels. Decreased fluorescence levels are evident in cells pretreated with ASC after only 1 hour of digestion with cellulase (D, bottom panel) compared to cells at time 0 (D, top panel) or undigested ASC-pretreated cells (C). (E, F) The total fluorescence values of single xylem cells are plotted as a function of cell area. Four different symbols indicate the time of incubation, as indicated in the inset legends. (E) The fluorescence distributions of untreated cells taken at 1-hour time intervals during a 3-hour incubation without cellulase (top) or with cellulase (bottom) overlap. (F) The fluorescence distributions of ASC-pretreated cells taken at 1-hour intervals during incubation without cellulase (top) are also similar, while the fluorescence levels from cells digested with cellulase (bottom) decreased during the incubation. (G, H) The average of mean fluorescence values of the cells in (<i>E</i>) and (<i>F</i>) are plotted as a function of time. (G) No significant difference is observed between the mean fluorescence of untreated cells incubated without cellulase (open symbols, dashed line) or with cellulase (closed symbols, solid line). (H) The mean fluorescence of ASC-pretreated cells incubated without cellulase (open symbols, dashed line) or with cellulase (closed symbols, solid line) are significantly different (*<i>p</i><0.001, **<i>p</i><0.0001). Error bars=SD. Scale bar=20µm.</p
    corecore