5,306 research outputs found

    Determination and Occurrence of Phenoxyacetic Acid Herbicides and Their Transformation Products in Groundwater Using Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry

    Get PDF
    This research is funded by the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and Marine (RS-544) and the Teagasc Walsh Fellowship Scheme.peer-reviewedA sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 ”g·L−1 for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 ”g·L−1 allowed in the European Union (EU) drinking water legislation [1]. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 ”g·L−1. The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater

    Assessing the Quality of European Democracy:Are Voters Voting Correctly?

    Get PDF

    Integrating archaeology and ancient DNA analysis to address invasive species colonization in the Gulf of Alaska

    Get PDF
    The intentional and unintentional movement of plants and animals by humans has transformed ecosystems and landscapes globally. Assessing when and how a species was introduced are central to managing these transformed landscapes, particularly in island environments. In the Gulf of Alaska, there is considerable interest in the history of mammal introductions and rehabilitating Gulf of Alaska island environments by eradicating mammals classified as invasive species. The Arctic ground squirrel (Urocitellus parryii) is of concern because it affects vegetation and seabirds on Gulf of Alaska islands. This animal is assumed to have been introduced by historic settlers; however, ground squirrel remains in the prehistoric archaeological record of Chirikof Island, Alaska, challenge this timeline and suggest they colonized the islands long ago. We used 3 lines of evidence to address this problem: direct radiocarbon dating of archaeological squirrel remains; evidence of prehistoric human use of squirrels; and ancient DNA analysis of dated squirrel remains. Chirikof squirrels dated to at least 2000 years ago, and cut marks on squirrel bones suggested prehistoric use by people. Ancient squirrels also shared a mitochondrial haplotype with modern Chirikof squirrels. These results suggest that squirrels have been on Chirikof longer than previously assumed and that the current population of squirrels is closely related to the ancient population. Thus, it appears ground squirrels are not a recent, human‐mediated introduction and may have colonized the island via a natural dispersal event or an ancient human translocation.We thank T. Rick, D. Grayson, R. Fleischer, M. Hawkins, A. West, and C. Mikeska for their contributions to this research. We also thank 3 reviewers and the editors of Conservation Biology who greatly improved this paper. This work was funded by the National Geographic Society, the University of Maine, the Smithsonian Institution, and Boston University. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service. (National Geographic Society; University of Maine; Smithsonian Institution; Boston University)Published versio

    A Sustained Dietary Change Increases Epigenetic Variation in Isogenic Mice

    Get PDF
    Epigenetic changes can be induced by adverse environmental exposures, such as nutritional imbalance, but little is known about the nature or extent of these changes. Here we have explored the epigenomic effects of a sustained nutritional change, excess dietary methyl donors, by assessing genomic CpG methylation patterns in isogenic mice exposed for one or six generations. We find stochastic variation in methylation levels at many loci; exposure to methyl donors increases the magnitude of this variation and the number of variable loci. Several gene ontology categories are significantly overrepresented in genes proximal to these methylation-variable loci, suggesting that certain pathways are susceptible to environmental influence on their epigenetic states. Long-term exposure to the diet (six generations) results in a larger number of loci exhibiting epigenetic variability, suggesting that some of the induced changes are heritable. This finding presents the possibility that epigenetic variation within populations can be induced by environmental change, providing a vehicle for disease predisposition and possibly a substrate for natural selection.This work was supported by the Australian Research Council (DP0771859) and the National Health and Medical Research Council (#459412, #635510)

    Teaching Social Justice Lawyering: Systematically Including Community Legal Education in Law School Clinics

    Get PDF
    There is a body of literature on clinical legal theory that urges a focus in clinics beyond the single client to an explicit teaching of social justice lawyering. This Article adds to this emerging body of work by discussing the valuable role community legal education plays as a vehicle for teaching skills and values essential to single client representation and social justice lawyering. The Article examines the theoretical underpinnings of clinical legal education, community organizing and community education and how they influenced the authors’ design and implementation of community legal education within their clinics. It then discusses two projects designed to help victims of domestic violence. The first project has been ongoing for several years in a clinic with a long history of incorporating community education into its work. The second project was undertaken for the first time by a clinic teaching community legal education after a long hiatus. Through the discussion of these two projects, the Article evaluates and explains the pedagogical and logistical successes and challenges of incorporating community education into clinical programs and assesses the justice outcomes of their community work, both to the communities served and to their students

    Teaching Social Justice Lawyering: Systematically Including Community Legal Education in Law School Clinics

    Get PDF
    There is a body of literature on clinical legal theory that urges a focus in clinics beyond the single client to an explicit teaching of social justice lawyering. This Article adds to this emerging body of work by discussing the valuable role community legal education plays as a vehicle for teaching skills and values essential to single client representation and social justice lawyering. The Article examines the theoretical underpinnings of clinical legal education, community organizing and community education and how they influenced the authors’ design and implementation of community legal education within their clinics. It then discusses two projects designed to help victims of domestic violence. The first project has been ongoing for several years in a clinic with a long history of incorporating community education into its work. The second project was undertaken for the first time by a clinic teaching community legal education after a long hiatus. Through the discussion of these two projects, the Article evaluates and explains the pedagogical and logistical successes and challenges of incorporating community education into clinical programs and assesses the justice outcomes of their community work, both to the communities served and to their students

    Relating Detonation Parameters to the Detonation Synthesis of Silicon Carbide

    Get PDF
    Detonation synthesis of silicon carbide (SiC) nanoparticles from carbon liberated by negatively oxygen balanced explosives was evaluated in a 23 factorial design to determine the effects of three categorical experimental factors: (1) cyclotrimethylene-trinitramine (RDX)/2,4,6-trinitrotoluene (TNT) ratio, (2) silicon (Si) additive concentration, and (3) Si particle size. These factors were evaluated at low and high levels as they relate to the detonation performance of the explosive and the solid Si-containing phases produced. Detonation velocity and Chapman-Jouguet (C-J) detonation pressure, which were measured using rate stick plate dent tests, were evaluated. Solid detonation product mass, silicon carbide product concentration, and residual silicon concentration were evaluated using the x-ray diffraction analysis. The factors of Si concentration and the RDX:TNT ratio were shown to affect detonation performance in terms of detonation velocity and C-J pressure by up to 10% and 22%, respectively. Increased concentration of Si in the reactants improved the average SiC concentration in the detonation products from 1.9 to 2.8 wt. %. Similarly, increasing the ratio of RDX to TNT further oxidized detonation products and reduced the average residual Si remaining after detonation from 8.6 to 2.8 wt. %. A 70:30 mass ratio mixture of RDX to TNT loaded with 10 wt. % \u3c 44 ÎŒm silicon powder produced an estimated 1.33 g of nanocrystalline cubic silicon carbide from a 150-g test charge. Using a lower concentration of added silicon with a finer particle size reduced SiC yield in the residue to 0.38 g yet improved the SiC to residual Si ratio to 1.64:1

    Detonation Synthesis of Nanoscale Silicon Carbide from Elemental Silicon

    Get PDF
    Direct reaction of precursors with the products of detonation remains an underexplored area in the ever-growing body of detonation synthesis literature. This study demonstrated the synthesis of silicon carbide during detonation by reaction of elemental silicon with carbon products formed from detonation of RDX/TNT mixtures. Continuum scale simulation of the detonation showed that energy transfer by the detonation wave was completed within 2–9 ÎŒs depending on location of measurement within the detonating explosive charge. The simulated environment in the detonation product flow beyond the Chapman-Jouguet condition where pressure approaches 27 GPa and temperatures reach 3300 K was thermodynamically suitable for cubic silicon carbide formation. Carbon and added elemental silicon in the detonation products remained chemically reactive up to 500 ns after the detonation wave passage, which indicated that the carbon-containing products of detonation could participate in silicon carbide synthesis provided sufficient carbon-silicon interaction. Controlled detonation of an RDX/TNT charge loaded with 3.2 wt% elemental silicon conducted in argon environment lead to formation of ∌3.1 wt% ÎČ-SiC in the condensed detonation products. Other condensed detonation products included primarily amorphous silica and carbon in addition to residual silicon. These results show that the energized detonation products of conventional high explosives can be used as precursors in detonation synthesis of ceramic nanomaterials

    Social support reduces stress hormone levels in wild chimpanzees across stressful events and everyday affiliations

    Get PDF
    We acknowledge Royal Zoological Society of Scotland for providing core funding to BCFS and Leakey Foundation (R.M.W., C.C., T.D., K.Z.), British Academy (C.C.), Leverhulme Trust (K.Z.) and Max Planck Society (R.M.W., C.C. and T.D.) for funding the research.Stress is a major cause of poor health and mortality in humans and other social mammals. Close social bonds buffer stress, however much of the underlying physiological mechanism remains unknown. Here, we test two key hypotheses: bond partner effects occur only during stress (social buffering) or generally throughout daily life (main effects). We assess urinary glucocorticoids (uGC) in wild chimpanzees, with or without their bond partners, after a natural stressor, resting or everyday affiliation. Chimpanzees in the presence of, or interacting with, bond partners rather than others have lowered uGC levels across all three contexts. These results support the main effects hypothesis and indicate that hypothalamic-pituitary-adrenocortical (HPA) axis regulation is mediated by daily engagement with bond partners both within and out of stressful contexts. Regular social support with bond partners could lead to better health through daily ‘micro-management’ of the HPA axis, a finding with potential medical implications for humans.Publisher PDFPeer reviewe
    • 

    corecore