2 research outputs found

    Biocompatible and Photostable Photoacoustic Contrast Agents as Nanoparticles Based on Bodipy Scaffold and Polylactide Polymers: Synthesis, Formulation, and <i>In Vivo</i> Evaluation

    No full text
    We have designed a new Bodipy scaffold for efficient in vivo photoacoustic (PA) imaging of nanoparticles commonly used as drug nanovectors. The new dye has an optimized absorption band in the near-infrared window in biological tissue and a low fluorescence quantum yield that leads to a good photoacoustic generation efficiency. After Bodipy-initiated ring-opening polymerization of lactide, the polylactide–Bodipy was formulated into PEGylated nanoparticles (NPs) by mixing with PLA–PEG at different concentrations. Formulated NPs around 100 nm exhibit excellent PA properties: an absorption band at 760 nm and a molar absorption coefficient in between that of molecular PA absorbers and gold NPs. Highly improved photostability compared to cyanine-labeled PLA NPs as well as innocuity in cultured macrophages were demonstrated. After intravenous injection in healthy animals, NPs were easily detected using a commercial PA imaging system and spectral unmixing, opening the way to their use as theranostic agents

    A Polymer Prodrug Strategy to Switch from Intravenous to Subcutaneous Cancer Therapy for Irritant/Vesicant Drugs

    No full text
    Chemotherapy is almost exclusively administered via the intravenous (IV) route, which has serious limitations (e.g., patient discomfort, long hospital stays, need for trained staff, high cost, catheter failures, infections). Therefore, the development of effective and less costly chemotherapy that is more comfortable for the patient would revolutionize cancer therapy. While subcutaneous (SC) administration has the potential to meet these criteria, it is extremely restrictive as it cannot be applied to most anticancer drugs, such as irritant or vesicant ones, for local toxicity reasons. Herein, we report a facile, general, and scalable approach for the SC administration of anticancer drugs through the design of well-defined hydrophilic polymer prodrugs. This was applied to the anticancer drug paclitaxel (Ptx) as a worst-case scenario due to its high hydrophobicity and vesicant properties (two factors promoting necrosis at the injection site). After a preliminary screening of well-established polymers used in nanomedicine, polyacrylamide (PAAm) was chosen as a hydrophilic polymer owing to its greater physicochemical, pharmacokinetic, and tumor accumulation properties. A small library of Ptx-based polymer prodrugs was designed by adjusting the nature of the linker (ester, diglycolate, and carbonate) and then evaluated in terms of rheological/viscosity properties in aqueous solutions, drug release kinetics in PBS and in murine plasma, cytotoxicity on two different cancer cell lines, acute local and systemic toxicity, pharmacokinetics and biodistribution, and finally their anticancer efficacy. We demonstrated that Ptx-PAAm polymer prodrugs could be safely injected subcutaneously without inducing local toxicity while outperforming Taxol, the commercial formulation of Ptx, thus opening the door to the safe transposition from IV to SC chemotherapy
    corecore