50 research outputs found

    Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI

    Get PDF
    On January 1st 2019, the New Horizons spacecraft flew by the classical Kuiper belt object (486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric functions. Arrokoth has a geometric albedo of p_v = 0.21_(−0.04)^(+0.05) at a wavelength of 550 nm and ≈0.24 at 610 nm. Arrokoth's geometric albedo is greater than the median but consistent with a distribution of cold classical Kuiper belt objects whose geometric albedos were determined by fitting a thermal model to radiometric observations. Thus, Arrokoth's geometric albedo adds to the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of Arrokoth's surface varies with location, ranging from ≈0.10–0.40 at 610 nm with an approximately Gaussian distribution. Both Arrokoth's extrema dark and extrema bright surfaces are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have similar normal reflectance distributions: both are approximately Gaussian, peak at ≈0.25 at 610 nm, and range from ≈0.10–0.40, which is consistent with co-formation and co-evolution of the two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle and location, the average hemispherical albedo at 610 nm is 0.063 ± 0.015. The Bond albedo of Arrokoth at 610 nm is 0.062 ± 0.015

    Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI

    Get PDF
    On January 1st 2019, the New Horizons spacecraft flew by the classical Kuiper belt object (486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric functions. Arrokoth has a geometric albedo of p_v = 0.21_(−0.04)^(+0.05) at a wavelength of 550 nm and ≈0.24 at 610 nm. Arrokoth's geometric albedo is greater than the median but consistent with a distribution of cold classical Kuiper belt objects whose geometric albedos were determined by fitting a thermal model to radiometric observations. Thus, Arrokoth's geometric albedo adds to the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of Arrokoth's surface varies with location, ranging from ≈0.10–0.40 at 610 nm with an approximately Gaussian distribution. Both Arrokoth's extrema dark and extrema bright surfaces are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have similar normal reflectance distributions: both are approximately Gaussian, peak at ≈0.25 at 610 nm, and range from ≈0.10–0.40, which is consistent with co-formation and co-evolution of the two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle and location, the average hemispherical albedo at 610 nm is 0.063 ± 0.015. The Bond albedo of Arrokoth at 610 nm is 0.062 ± 0.015

    Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations

    Get PDF
    The New Horizons flyby of Pluto confirmed the existence of hazes in its atmosphere. Observations of a large high- to low- phase brightness ratio, combined with the blue color of the haze (indicative of Rayleigh scattering), suggest that the haze particles are fractal aggregates, perhaps analogous to the photochemical hazes on Titan. Therefore, studying the Pluto hazes can shed light on the similarities and differences between the Pluto and Titan atmospheres. We model the haze distribution using the Community Aerosol and Radiation Model for Atmospheres assuming that the distribution is shaped by downward transport and coagulation of particles originating from photochemistry. Hazes composed of both purely spherical and purely fractal aggregate particles are considered. General agreement between model results and solar occultation observations is obtained with aggregate particles when the downward mass flux of photochemical products is equal to the column-integrated methane destruction rate ∼1.2 × 10^(−14) g cm^(−2) s^(−1), while for spherical particles the mass flux must be 2–3 times greater. This flux is nearly identical to the haze production flux of Titan previously obtained by comparing microphysical model results to Cassini observations. The aggregate particle radius is sensitive to particle charging effects, and a particle charge to radius ratio of 30 e − /µm is necessary to produce ∼0.1–0.2 µm aggregates near Pluto's surface, in accordance with forward scattering measurements. Such a particle charge to radius ratio is 2–4 times higher than those previously obtained for Titan. Hazes composed of spheres with the same particle charge to radius ratio have particles that are 4 times smaller at Pluto's surface. These results further suggest that the haze particles are fractal aggregates. We also consider the effect of condensation of HCN, C_2H_2, C_2H_4, and C_2H_6 on the haze particles, which may play an important role in shaping their altitude and size distributions

    Cryovolcanic flooding in Viking Terra on Pluto

    Get PDF
    A prominent fossa trough (Uncama Fossa) and adjacent 28-km diameter impact crater (Hardie) in Pluto's Viking Terra, as seen in the high-resolution images from the New Horizons spacecraft, show morphological evidence of in-filling with a material of uniform texture and red-brown color. A linear fissure parallel to the trough may be the source of a fountaining event yielding a cryoclastic deposit having the same composition and color properties as is found in the trough and crater. Spectral maps of this region with the New Horizons LEISA instrument reveal the spectral signature of H₂O ice in these structures and in distributed patches in the adjacent terrain in Viking Terra. A detailed statistical analysis of the spectral maps shows that the colored H₂O ice filling material also carries the 2.2-μm signature of an ammoniated component that may be an ammonia hydrate (NH₃nH₂O) or an ammoniated salt. This paper advances the view that the crater and fossa trough have been flooded by a cryolava debouched from Pluto's interior along fault lines in the trough and in the floor of the impact crater. The now frozen cryolava consisted of liquid H₂O infused with the red-brown pigment presumed to be a tholin, and one or more ammoniated compounds. Although the abundances of the pigment and ammoniated compounds entrained in, or possibly covering, the H₂O ice are unknown, the strong spectral bands of the H₂O ice are clearly visible. In consideration of the factors in Pluto's space environment that are known to destroy ammonia and ammonia-water mixtures, the age of the exposure is of order ≤10⁹ years. Ammoniated salts may be more robust, and laboratory investigations of these compounds are needed

    Cryovolcanic flooding in Viking Terra on Pluto

    Get PDF
    A prominent fossa trough (Uncama Fossa) and adjacent 28-km diameter impact crater (Hardie) in Pluto's Viking Terra, as seen in the high-resolution images from the New Horizons spacecraft, show morphological evidence of in-filling with a material of uniform texture and red-brown color. A linear fissure parallel to the trough may be the source of a fountaining event yielding a cryoclastic deposit having the same composition and color properties as is found in the trough and crater. Spectral maps of this region with the New Horizons LEISA instrument reveal the spectral signature of H₂O ice in these structures and in distributed patches in the adjacent terrain in Viking Terra. A detailed statistical analysis of the spectral maps shows that the colored H₂O ice filling material also carries the 2.2-μm signature of an ammoniated component that may be an ammonia hydrate (NH₃nH₂O) or an ammoniated salt. This paper advances the view that the crater and fossa trough have been flooded by a cryolava debouched from Pluto's interior along fault lines in the trough and in the floor of the impact crater. The now frozen cryolava consisted of liquid H₂O infused with the red-brown pigment presumed to be a tholin, and one or more ammoniated compounds. Although the abundances of the pigment and ammoniated compounds entrained in, or possibly covering, the H₂O ice are unknown, the strong spectral bands of the H₂O ice are clearly visible. In consideration of the factors in Pluto's space environment that are known to destroy ammonia and ammonia-water mixtures, the age of the exposure is of order ≤10⁹ years. Ammoniated salts may be more robust, and laboratory investigations of these compounds are needed

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio
    corecore