8 research outputs found

    Hormonal induction of spermiation, courting behavior and spawning in the southern bell frog, Litoria raniformis

    No full text
    We trialled the efficacy of various exogenous hormones to induce spermiation, courtship behavior, and spawning in the “endangered” southern bell frog, Litoria raniformis. Intralymphatic administration of Lucrin®, a synthetic nonapeptide luteinizing hormone releasing hormone (LHRH), was used successfully to induce courting behaviors and ejaculation of spermatozoa in males. Various hormones, including Lucrin®, another synthetic LHRH analog ([des-Gly¹⁰, D-Ala⁶]-LHRH), human chorionic gonadotropin, progesterone, and a dopamine receptor antagonist failed to promote oviposition and spawning in females. This and earlier studies indicate that in the efficacy of hormonal induction in amphibians varies between taxa, hormones, and genders. The lack of response in females may limit the use of reproduction technology in the southern bell frog and closely related species of Australian bell frogs.9 page(s

    A Low concentration of atrazine does not influence the acute toxicity of the insecticide terbufos or its breakdown products to Chironomus tepperi

    No full text
    The acute toxicities of the insecticide terbufos and its major breakdown products individually, as binary mixtures, and in combination with the co-applied herbicide atrazine were evaluated using final instar larvae of the midge Chironomus tepperi. Terbufos, terbufos sulfoxide and terbufos sulfone were highly toxic to C. tepperi with mean 96-h EC50 values of 2.13, 3.64 and 2.59 μg/l, respectively. No interaction was observed between atrazine (25 μg/l) and terbufos or its breakdown products while the binary mixture of terbufos sulfoxide and terbufos sulfone exhibited additive toxicity. The high toxicities of terbufos and its environmentally persistent oxidation products suggest that contamination of aquatic systems with this insecticide pose a threat to aquatic organisms whether or not atrazine is also present.9 page(s

    Toxicity of the insecticide terbufos, its oxidation metabolites, and the herbicide atrazine in binary mixtures to ceriodaphnia cf dubia

    No full text
    The acute toxicity of terbufos and its major metabolites, tested alone, in binary mixtures or in combination with atrazine were evaluated using neonates of the cladoceran Ceriodaphnia cf dubia. Terbufos, terbufos sulfoxide, and terbufos sulfone tested individually were highly toxic to C. cf dubia, with mean 96-h EC50 values of 0.08, 0.36, and 0.19 μg/l, respectively. The addition of atrazine (10 μg/l) significantly increased the toxicity of terbufos. The toxicity of terbufos sulfone was unaffected by atrazine, whereas the results for terbufos sulfoxide were equivocal. Equitoxic mixtures of the metabolites showed additive toxicity to C. cf dubia. The high toxicities of terbufos and its environmentally persistent oxidative metabolites suggest that contamination of aquatic systems with this insecticide mixture and the coapplied herbicide atrazine might pose a greater hazard to some biota than their individual toxicities.9 page(s

    Amphibians and agricultural chemicals : review of the risks in a complex environment

    No full text
    Agricultural landscapes, although often highly altered in nature, provide habitat for many species of amphibian. However, the persistence and health of amphibian populations are likely to be compromised by the escalating use of pesticides and other agricultural chemicals. This review examines some of the issues relating to exposure of amphibian populations to these chemicals and places emphasis on mechanisms of toxicity

    Towards a general framework for the assessment of interactive effects of multiple stressors on aquatic ecosystems:Results from the Making Aquatic Ecosystems Great Again (MAEGA) workshop

    No full text
    A workshop was held in Wageningen, The Netherlands, in September 2017 to collate data and literature on three aquatic ecosystem types (agricultural drainage ditches, urban floodplains, and urban estuaries), and develop a general framework for the assessment of multiple stressors on the structure and functioning of these systems. An assessment framework considering multiple stressors is crucial for our understanding of ecosystem responses within a multiply stressed environment, and to inform appropriate environmental management strategies. The framework consists of two components: (i) problem identification and (ii) impact assessment. Both assessments together proceed through the following steps: 1) ecosystem selection; 2) identification of stressors and quantification of their intensity; 3) identification of receptors or sensitive groups for each stressor; 4) identification of stressor-response relationships and their potential interactions; 5) construction of an ecological model that includes relevant functional groups and endpoints; 6) prediction of impacts of multiple stressors, 7) confirmation of these predictions with experimental and monitoring data, and 8) potential adjustment of the ecological model. Steps 7 and 8 allow the assessment to be adaptive and can be repeated until a satisfactory match between model predictions and experimental and monitoring data has been obtained. This paper is the preface of the MAEGA (Making Aquatic Ecosystems Great Again) special section that includes three associated papers which are also published in this volume, which present applications of the framework for each of the three aquatic systems
    corecore