109 research outputs found

    Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact

    Get PDF
    Long-lasting insecticidal bed nets (LLINs) protect humans from malaria transmission and are fundamental to malaria control worldwide, but little is known of how mosquitoes interact with nets. Elucidating LLIN mode of action is essential to maintain or improve efficacy, an urgent need as emerging insecticide resistance threatens their future. Tracking multiple free-flying Anopheles gambiae responding to human-occupied bed nets in a novel large-scale system, we characterised key behaviours and events. Four behavioural modes with different levels of net contact were defined: swooping, visiting, bouncing and resting. Approximately 75% of all activity occurred at the bed net roof where multiple brief contacts were focussed above the occupant’s torso. Total flight and net contact times were lower at LLINs than untreated nets but the essential character of the response was unaltered. LLINs did not repel mosquitoes but impacted rapidly: LLIN contact of less than 1 minute per mosquito during the first ten minutes reduced subsequent activity; after thirty minutes, activity at LLINs was negligible. Velocity measurements showed that mosquitoes detected nets, including unbaited untreated nets, prior to contact. This is the most complete characterisation of mosquito-LLIN interactions to date, and reveals many aspects of LLIN mode of action, important for developing the next generation of LLINs

    A novel video-tracking system to quantify the behaviour of nocturnal mosquitoes attacking human hosts in the field

    Get PDF
    Many vectors of malaria and other infections spend most of their adult life within human homes, the environment where they bloodfeed and rest, and where control has been most successful. Yet, knowledge of peri-domestic mosquito behaviour is limited, particularly how mosquitoes find and attack human hosts or how insecticides impact on behaviour. This is partly because technology for tracking mosquitoes in their natural habitats, traditional dwellings in disease-endemic countries, has never been available. We describe a sensing device that enables observation and recording of nocturnal mosquitoes attacking humans with or without a bed net, in the laboratory and in rural Africa. The device addresses requirements for sub-millimetre resolution over a 2.0 x 1.2 x 2.0 m volume while using minimum irradiance. Data processing strategies to extract individual mosquito trajectories and algorithms to describe behaviour during host/net interactions are introduced. Results from UK laboratory and Tanzanian field tests showed that Culex quinquefasciatus activity was higher and focused on the bed net roof when a human host was present, in colonized and wild populations. Both C. quinquefasciatus and Anopheles gambiae exhibited similar behavioural modes, with average flight velocities varying by less than 10%. The system offers considerable potential for investigations in vector biology and many other fields

    Host-seeking activity of a Tanzanian population of Anopheles arabiensis at an insecticide treated bed net

    Get PDF
    Background: Understanding how mosquitoes respond to long lasting insecticide treated nets (LLINs) is fundamental to sustaining the effectiveness of this essential control tool. We report on studies with a tracking system to investigate behaviour of wild anophelines at an LLIN, in an experimental hut at a rural site in Mwanza, Tanzania. Methods: Groups of adult female mosquitoes (n = 10 per replicate) reared from larvae of a local population, identified as predominantly (95%) Anopheles arabiensis, were released in the hut. An infrared video tracking system recorded flight and net contact activity over 1 h as the mosquitoes attempted to reach a supine human volunteer within a bed net (either a deltamethrin-treated LLIN or an untreated control net). A range of activities, including flight path, position in relation to the bed net and duration of net contact, were quantified and compared between treatments. Results: The total time that female An. arabiensis spent in flight around LLINs was significantly lower than at untreated nets [F(1,10) = 9.26, p = 0.012], primarily due to a substantial reduction in the time mosquitoes spent in persistent ‘bouncing’ flight [F(1,10) = 18.48, p = 0.002]. Most activity occurred at the net roof but significantly less so with LLINs (56.8% of total) than untreated nets [85.0%; Χ2 (15) = 234.69, p < 0.001]. Activity levels at the bed net directly above the host torso were significantly higher with untreated nets (74.2%) than LLINs [38.4%; Χ2 (15) = 33.54, p = 0.004]. ‘Visiting’ and ‘bouncing’ rates were highest above the volunteer’s chest in untreated nets (39.9 and 50.4%, respectively) and LLINs [29.9 and 42.4%; Χ2 (13) = 89.91, p < 0.001; Χ2 (9) = 45.73, p < 0.001]. Highest resting rates were above the torso in untreated nets [77%; Χ2 (9) = 63.12, p < 0.001], but in LLINs only 33.2% of resting occurred here [Χ2 (9) = 27.59, p = 0.001], with resting times spread between the short vertical side of the net adjacent to the volunteer’s head (21.8%) and feet (16.2%). Duration of net contact by a single mosquito was estimated at 204–290 s on untreated nets and 46–82 s on LLINs. While latency to net contact was similar in both treatments, the reduction in activity over 60 min was significantly more rapid for LLINs [F(1,10) = 6.81, p = 0.026], reiterating an ‘attract and kill’ rather than a repellent mode of action. Conclusions: The study has demonstrated the potential for detailed investigations of behaviour of wild mosquito populations under field conditions. The results validate the findings of earlier laboratory studies on mosquito activity at LLINs, and reinforce the key role of multiple brief contacts at the net roof as the critical LLIN mode of action

    Application of quality by design tools to upstream processing of platelet precursor cells to enable in vitro manufacture of blood products

    Get PDF
    Annually 4.5 million platelet units are transfused in Europe and the United States. These are obtained solely from allogeneic donations and have a shelf life of 5-7 days. To address the corresponding supply challenge, Moreau et al.1 devised a novel process for producing megakaryocytes (MKs, the platelet precursor cell) in vitro. A transcription-factor driven, forward-programming (FOP) approach converts human pluripotent stem cells into MKs. This strategy has the unique advantage of generating high yields of pure MKs in chemically defined medium which could lead to the production of a consistent, reliable supply of platelets which overcomes the logistical, financial and biosafety challenges for health organisations worldwide. Here we follow a Quality by Design (QbD) approach to enable improvements to the upstream processing of FOPMKs. Firstly, we created a process flow diagram for production of in vitro platelets for transfusion, which segregated processes into individual unit operations for control and optimisation. Next, we developed a Quality Target Product Profile (QTPP) and identified Critical Quality Attributes (CQAs) for each stage. We conducted a range of experiments utilising Design of Experiments (DOE) and mechanistic modelling2 tools to link Critical Process Parameters (CPPs) to CQAs. For adherent culture, we identified a productivity limit related to surface area available for growth and a cell loss phase which was dependent on cell seeding density, RhoK inhibitor usage and seed density. Using suspension cultures of FOPMK. We noted that TPO and Doxycycline concentration were CPPs as these impacted cell net growth rate and phenotype trajectory. Furthermore, we noted that medium exhaustion led to a 30% loss of viable cells over 8 hours. Proof of concept studies also showed that FOPMKs can be cultured in scaled-down suspension systems (ambr-15 and spinner flask culture) whilst retaining CQAs. 1. Moreau, T. et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat. Commun. 7, 1–15 (2016). 2. Stacey, A. J., Cheeseman, E. A., Glen, K. E., Moore, R. L. L. & Thomas, R. J. Experimentally integrated dynamic modelling for intuitive optimisation of cell-based processes and manufacture. Biochem. Eng. J. 132, 130–138 (2018)

    A Large Sample Study of Red Giants in the Globular Cluster Omega Centauri (NGC 5139)

    Full text link
    We present abundances of several light, alpha, Fe-peak, and neutron-capture elements for 66 red giant branch (RGB) stars in the Galactic globular cluster Omega Centauri. Our observations lie in the range 12.0<V<13.5 and focus on the intermediate and metal-rich RGBs. We find that there are at least four peaks in the metallicity distribution function at [Fe/H]=-1.75, -1.45, -1.05, and -0.75, which correspond to about 55%, 30%, 10%, and 5% of our sample, respectively. Additionally, the most metal-rich stars are the most centrally located. Na and Al are correlated despite exhibiting star-to-star dispersions of more than a factor of 10, but the distribution of those elements appears to be metallicity dependent and are divided at [Fe/H]~-1.2. About 40-50% of stars with [Fe/H]<-1.2 have Na and Al abundances consistent with production solely in Type II supernovae and match observations of disk and halo stars at comparable metallicity. The remaining metal-poor stars are enhanced in Na and Al compared to their disk and halo counterparts and are mostly consistent with predicted yields from >5 M_sun asymptotic giant branch (AGB) stars. At [Fe/H]>-1.2, more than 75% of the stars are Na/Al enhanced and may have formed almost exclusively from AGB ejecta. Most of these stars are enhanced in Na by at least 0.2 dex for a given Al abundance than would be expected based on "normal" globular cluster values. All stars in our sample are alpha-rich and have solar-scaled Fe-peak abundances. Eu does not vary extensively as a function of metallicity; however, [La/Fe] varies from about -0.4 to +2 and stars with [Fe/H]>-1.5 have [La/Eu] values indicating domination by the s-process. A quarter of our sample have [La/Eu]>+1 and may be the result of mass transfer in a binary system.Comment: ApJ Accepted; 90 pages, 16 Figures, 5 Table

    Barrier bednets target malaria vectors and expand the range of usable insecticides

    Get PDF
    Transmission of Plasmodium falciparum malaria parasites occurs when nocturnal Anopheles mosquito vectors feed on human blood. In Africa, where malaria burden is highest, bednets treated with pyrethroid insecticide were highly effective in preventing mosquito bites and reducing transmission, and essential to achieving unprecedented reductions in malaria until 2015 (ref. ). Since then, progress has stalled , and with insecticidal bednets losing efficacy against pyrethroid-resistant Anopheles vectors , methods that restore performance are urgently needed to eliminate any risk of malaria returning to the levels seen before their widespread use throughout sub-Saharan Africa . Here, we show that the primary malaria vector Anopheles gambiae is targeted and killed by small insecticidal net barriers positioned above a standard bednet in a spatial region of high mosquito activity but zero contact with sleepers, opening the way for deploying many more insecticides on bednets than is currently possible. Tested against wild pyrethroid-resistant A. gambiae in Burkina Faso, pyrethroid bednets with organophosphate barriers achieved significantly higher killing rates than bednets alone. Treated barriers on untreated bednets were equally effective, without significant loss of personal protection. Mathematical modelling of transmission dynamics predicted reductions in clinical malaria incidence with barrier bednets that matched those of 'next-generation' nets recommended by the World Health Organization against resistant vectors. Mathematical models of mosquito-barrier interactions identified alternative barrier designs to increase performance. Barrier bednets that overcome insecticide resistance are feasible using existing insecticides and production technology, and early implementation of affordable vector control tools is a realistic prospect

    Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala

    Get PDF
    Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala (lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed controls, and alterations in neuronal function were observed in all brain structures examined, including several distinct differences between subregions within each structure. Chronic ethanol exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-limbic brain regions, suggests that there may be complex interactions between these regions in the regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future examination of projection-specific effects of ethanol in cortico-limbic circuitry

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore