25 research outputs found

    Optimising mechanical separation of anaerobic digestate for total solids and nutrient removal

    Get PDF
    Publication history: Accepted - 16 June 2023; Published - 28 June 2023.Mechanical separation of anaerobic digestate has been identified as a method to reduce pollution risk to waterways by partitioning phosphorus in the solid fraction and reducing its application to land. Separators have adjustable parameters which affect separation efficiency, and hence the degree of phosphorous partitioning, but information on how these parameters affect separation performance is limited in the literature. Two well known technologies were investigated, decanter centrifuge and screw press, to determine the most efficient method of separation. Counterweight load and the use of an oscillator were adjusted for the screw press, while bowl speed, auger differential speed, feed rate and polymer addition were modified for the decanter centrifuge. Separation efficiency was determined for total solids, phosphorus, nitrogen, potassium, and carbon, and the total solids content of resulting fractions was measured. The decanter centrifuge had higher separation efficiency for phosphorus in all cases, ranging from 51% to 71.5%, while the screw press had a phosphorus separation efficiency ranging from 8.5% to 10.9% for digestate of ~5% solids (slurry/grass silage mix). Separation by decanter centrifuge partitioned up to 56% of nitrogen in the solid fraction leaving a reduced nitrogen content in the liquid fraction available for land spreading; this nitrogen would most likely need to be replaced by chemical fertiliser which would add to the cost of the system. The decanter centrifuge is better suited to cases where phosphorus recovery is the most important factor, while the screw press could be advantageous in cases where cost is a limiting factor.This project was supported by The Bryden Centre. The Bryden Centre project is supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB). The views and opinions expressed in this paper do not necessarily reflect those of the European Commission or the Special EU Programmes Body (SEUPB). The work was also supported by Queen’s University Belfast and the Agri-Food and Biosciences Institute in Northern Ireland

    An economic analysis of anaerobic digestate fuel pellet production: can digestate fuel pellets add value to existing operations?

    Get PDF
    Publication history: Accepted - 9 April 2021; Published online - 16 April 2021.Anaerobic digestion provides renewable energy through waste valorisation, but the digestate by-product is underutilised and presents a risk to water quality. Mechanical separation partitions phosphorous into the solid fraction and further processing into a fuel pellet can provide an additional source of energy and revenue. Previous economic analyses looked only at aspects of the system (e.g. operational costs solely) and the system requires further investigation to determine viability. In this paper, an economic assessment of digestate fuel pellet production at farm-scale anaerobic digestion plants was carried out. The significance of this work is to provide a comprehensive assessment of the energy, phosphorous, and economic balances involved in digestate fuel pellet production at existing anaerobic digestion plants. The aim of this paper is to determine the financial viability of digestate fuel pellet production with objectives to compare two mechanical separation technologies: screw press, and decanting centrifuge. Economies of scale hold true for digestate pellet production and the available digestate in typical UK farm-based anaerobic digestion plants ( 500 kWe) is insufficient for profitability, with pellet production costing from £176/t (decanting centrifuge) to £215/t (screw press), compared to a typical wood pellet sale price of £185/t. Increasing digestate quantity by collaboration of plant operators can reduce the cost of pellet production to between £95/t and £121/t, improving financial viability and increasing the profit per head of cattle by 9–20% on a typical dairy farm utilising anaerobic digestion. The system has potential to aid rural development while also protecting the environment and contributing to the diversification of energy supply.This project was supported by The Bryden Centre. The Bryden Centre project is supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB). The views and opinions expressed in this paper do not necessarily reflect those of the European Commission or the Special EU Programmes Body (SEUPB). The work was also supported by Queen’s University Belfast and the Agri-Food and Biosciences Institute in Northern Ireland

    Effect of anaerobic digestate fuel pellet production on Enterobacteriaceae and Salmonella persistence

    Get PDF
    Publication history: Accepted - 10 June 2022; Published online - 7 July 2022.Production of digestate pellets for fuel has been identified as a promising circular economy approach to provide renewable energy and additional income to farms, while at the same time presenting the potential to divert raw digestate from nutrient-saturated land and reduce the risk to water quality. Although previous research has investigated the feasibility of pellet production, there has been little focus on the bio-safety aspects of the system. Little is currently known about the persistence of bacteria present in the digestate and the potential impacts on human health for those handling this product. The aim of the present research was to determine the effect that each step in the pellet production process has on bacteria numbers: anaerobic digestion, mechanical separation, solid drying, and pelletisation. Enterobacteriaceae enumeration by colony count method was used to quantify bacteria, and the presence of Salmonella at each stage was determined. The Enterobacteriaceae count reduced with each stage, and the final pelletisation step reduced bacteria numbers to below detectable levels (<10 colony forming units/g). Salmonella was only detected in the starting slurry and absent from digestate onwards. Storage of the pellets under winter and simulated summer conditions showed no reactivation of Enterobacteriaceae over time. The pelletisation process produces a digestate product with Enterobacteriaceae counts below the maximum threshold (PAS110 specification) for transport off the source farm, but care must still be taken when handling digestate pellets as complete sterilisation has not been confirmed.This project was supported by The Bryden Centre. The Bryden Centre project is supported by the European Union's INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB). The work was also supported by Queen's University Belfast and the Agri-Food and Biosciences Institute in Northern Ireland

    Review of two mechanical separation technologies for the sustainable management of agricultural phosphorus in nutrient-vulnerable zones

    Get PDF
    Publication history: Accepted - 20 April 2021; Published online - 23 April 2021This work reviews two mechanical separation technologies (screw press and decanting centrifuge) which could be used in the dairy, beef, pig and anaerobic digestion sectors in nutrient-vulnerable zones in order to improve the sustainability of manure and anaerobic digestate management by decreasing agricultural phosphorus loss and reducing environmental impact on water quality. Capital and operating costs, separation efficiency and throughput, and management and processing of separated fractions, including transport costs, environmental impacts and the biosecurity of separated solids for export, were considered. Of the two technologies reviewed, screw press separation is a more cost-effective option (5-fold cheaper per tonne of feedstock) when lower amounts of export of phosphorus off farm are acceptable. For farms and those with anaerobic digesters managing larger volumes of manure/digestate, screw press separation is possible. However if higher levels of phosphorus removal are required, the use of decanting centrifugation is a viable option. Centralised processing facilities could also make use of decanting centrifuge technology to act as processing hubs for local farms within a distance that makes it economical for transport of manure/treated manure to/from the processor (the maximum distance for economical transport of raw manure and separated solids is approximately 70 km and 84 km, respectively). Both separation technologies could be integrated into agricultural manure and digestate management systems in order to provide a more sustainable approach to managing agricultural phosphorus loss and its associated impact on water quality. Screw press and decanting centrifuge separation could reduce phosphorous loss to water bodies by 34% and from 30 to 93%, respectively.The authors wish to acknowledge support from the Department of Agriculture, Environment and Rural Affairs for Northern Ireland for funding Evidence and Innovation Project 18-04-01

    Minimizing the source of nociception and its concurrent effect on sensory hypersensitivity: An exploratory study in chronic whiplash patients

    Get PDF
    Abstract. Background. The cervical zygapophyseal joints may be a primary source of pain in up to 60% of individuals with chronic whiplash associated disorders (WAD) and may be a contributing factor for peripheral and centrally mediated pain (sensory hypersensitivity). Sensory hypersensitivity has been associated with a poor prognosis. The purpose of the study was to determine if there is a change in measures indicative of sensory hypersensitivity in patients with chronic WAD grade II following a medial branch block (MBB) procedure in the cervical spine. Methods. Measures of sensory hypersensitivity were taken via quantitative sensory testing (QST) consisting of pressure pain thresholds (PPT's) and cold pain thresholds (CPT's). In patients with chronic WAD (n = 18), the measures were taken at three sites bilaterally, pre- and post- MBB. Reduced pain thresholds at remote sites have been considered an indicator of central hypersensitivity. A healthy age and gender matched comparison group (n = 18) was measured at baseline. An independent t-test was applied to determine if there were any significant differences between the WAD and normative comparison groups at baseline with respect to cold pain and pressure pain thresholds. A dependent t-test was used to determine whether there were any significant differences between the pre and post intervention cold pain and pressure pain thresholds in the patients with chronic WAD. Results. At baseline, PPT's were decreased at all three sites in the WAD group (p < 0.001). Cold pain thresholds were increased in the cervical spine in the WAD group (p < 0.001). Post-MBB, the WAD group showed significant increases in PPT's at all sites (p < 0.05), and significant decreases in CPT's at the cervical spine (p < 0.001). Conclusions. The patients with chronic WAD showed evidence of widespread sensory hypersensitivity to mechanical and thermal stimuli. The WAD group revealed decreased sensory hypersensitivity following a decrease in their primary source of pain stemming from the cervical zygapophyseal joints

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Enterobacteriaceae counts during digestate fuel pellet production

    No full text
    Triplicate data sets of Enterobacteriaceae counts during the process of pellet production from anarobic digestate, from starting slurry material to finished pellet. Abstract for related paper: Production of digestate pellets for fuel has been identified as a promising circular economy approach to provide renewable energy and additional income to farms, while at the same time presenting the potential to divert raw digestate from nutrient-saturated land and reduce the risk to water quality. While previous research has investigated the feasibility of pellet production, there has been little focus on the bio-safety aspects of the system. Little is currently known about the persistence of bacteria present in the digestate and the potential impacts on human health for those handling this product. The aim of the present research was to determine the effect that each step in the pellet production process has on bacteria numbers: anaerobic digestion, mechanical separation, solids drying, and pelletisation. Enterobacteriaceae enumeration by colony count method was used to quantify bacteria, and the presence of Salmonella at each stage was determined. The Enterobacteriaceae count reduced with each stage and the final pelletisation step reduced bacteria numbers to below detectable levels (<10 colony forming units/g). Salmonella was only detected in the starting slurry and absent from digestate onwards. Storage of the pellets under winter and simulated summer conditions showed no reactivation of Enterobacteriaceae over time. The pelletisation process produces a digestate product with Enterobacteriaceae counts below the maximum threshold (PAS110 specification) for transport off the source farm, but care must still be taken when handling digestate pellets as complete sterilisation has not been confirmed
    corecore