90 research outputs found

    Numerical Investigation of Metrics for Epidemic Processes on Graphs

    Full text link
    This study develops the epidemic hitting time (EHT) metric on graphs measuring the expected time an epidemic starting at node aa in a fully susceptible network takes to propagate and reach node bb. An associated EHT centrality measure is then compared to degree, betweenness, spectral, and effective resistance centrality measures through exhaustive numerical simulations on several real-world network data-sets. We find two surprising observations: first, EHT centrality is highly correlated with effective resistance centrality; second, the EHT centrality measure is much more delocalized compared to degree and spectral centrality, highlighting the role of peripheral nodes in epidemic spreading on graphs.Comment: 6 pages, 1 figure, 3 tables, In Proceedings of 2015 Asilomar Conference on Signals, Systems, and Computer

    Network clustering and community detection using modulus of families of loops

    Get PDF
    Citation: Shakeri, H., Poggi-Corradini, P., Albin, N., & Scoglio, C. (2017). Network clustering and community detection using modulus of families of loops. Physical Review E, 95(1), 7. doi:10.1103/PhysRevE.95.012316We study the structure of loops in networks using the notion of modulus of loop families. We introduce an alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose weighting networks using these expected link usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks

    Maximizing algebraic connectivity in interconnected networks

    Get PDF
    Citation: Shakeri, H., Albin, N., Sahneh, F. D., Poggi-Corradini, P., & Scoglio, C. (2016). Maximizing algebraic connectivity in interconnected networks. Physical Review E, 93(3), 6. doi:10.1103/PhysRevE.93.030301Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically

    low enthalpy geothermal systems for air conditioning a case study in the mediterranean climate

    Get PDF
    Abstract This paper presents a preliminary evaluation of the technical and economic feasibility of a low-enthalpy geothermal system for air conditioning and its integration with other systems, including a photovoltaic plant and an electrical storage system. The pilot building is a research center located in the southern side of the Mediterranean basin (Sardinia, Italy). Preliminarily, the main geological, hydrogeological and geothermal characteristics of the area were analyzed. Then, an energetic assessment of the building and its plants was performed. The hourly production of a photovoltaic plant already designed for the building was assessed. To improve the energy efficiency and the thermal energy self-consumption, an alternative thermal generation plant was proposed to replace the existing air conditioning system: a water-water heat pump coupled with a low-enthalpy geothermal probe (vertical configuration), to be embedded into the ground or placed into an existing groundwater well. The feasibility of electric storage was evaluated by considering a system capacity of 100 kWh to temporarily store and self-consume the electricity overproduced by the photovoltaic plant. A preliminary economic assessment showed the viability of the photovoltaic system. The 100 kWh-capacity electric storage will increase the self-production percentage, but it is not economically affordable. The replacement of the current air-water heat pumps with one water-water heat pump will be economically convenient if coupled with a groundwater geothermal probe, but the solution of a vertical probe embedded into the ground is unsustainable, due to high drilling costs

    Circulating microRNA (miRNA) expression profiling in plasma of patients with gestational diabetes mellitus reveals upregulation of miRNA miR-330-3p

    Get PDF
    Gestational diabetes mellitus (GDM) is characterized by insulin resistance accompanied by low/absent beta-cell compensatory adaptation to the increased insulin demand. Although the molecular mechanisms and factors acting on beta-cell compensatory response during pregnancy have been partially elucidated and reported, those inducing an impaired beta-cell compensation and function, thus evolving in GDM, have yet to be fully addressed. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs, which negatively modulate gene expression through their sequence-specific binding to 3'UTR of mRNA target. They have been described as potent modulators of cell survival and proliferation and, furthermore, as orchestrating molecules of beta-cell compensatory response and function in diabetes. Moreover, it has been reported that miRNAs can be actively secreted by cells and found in many biological fluids (e.g., serum/plasma), thus representing both optimal candidate disease biomarkers and mediators of tissues crosstalk(s). Here, we analyzed the expression profiles of circulating miRNAs in plasma samples obtained from n = 21 GDM patients and from n = 10 non-diabetic control pregnant women (24-33 weeks of gestation) using TaqMan array microfluidics cards followed by RT-real-time PCR single assay validation. The results highlighted the upregulation of miR-330-3p in plasma of GDM vs non-diabetics. Furthermore, the analysis of miR-330-3p expression levels revealed a bimodally distributed GDM patients group characterized by high or low circulating miR-330 expression and identified as GDM-miR-330highand GDM-miR-330low. Interestingly, GDM-miR-330highsubgroup retained lower levels of insulinemia, inversely correlated to miR-330-3p expression levels, and a significant higher rate of primary cesarean sections. Finally, miR-330-3p target genes analysis revealed major modulators of beta-cell proliferation and of insulin secretion, such as the experimentally validated genes E2F1 and CDC42 as well as AGT2R2, a gene involved in the differentiation of mature beta-cells. In conclusion, we demonstrated that plasma miR-330-3p could be of help in identifying GDM patients with potential worse gestational diabetes outcome; in GDM, miR-330-3p may directly be transferred from plasma to beta-cells thus modulating key target genes involved in proliferation, differentiation, and insulin secretion

    Discovery of a new selective inhibitor of A Disintegrin And Metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin's lymphoma cell models

    Get PDF
    Hodgkin's lymphoma (HL) is the most common malignant lymphoma in young adults in the western world. This disease is characterized by an overexpression of ADAM-10 with increased release of NKG2D ligands, involved in an impaired immune response against tumor cells. We designed and synthesized two new ADAM-10 selective inhibitors, 2 and 3 based on previously published ADAM-17 selective inhibitor 1. The most promising compound was the thiazolidine derivative 3, with nanomolar activity for ADAM-10, high selectivity over ADAM-17 and MMPs and good efficacy in reducing the shedding of NKG2D ligands (MIC-B and ULBP3) in three different HL cell lines at non-toxic doses. Molecular modeling studies were used to drive the design and X-ray crystallography studies were carried out to explain the selectivity of 3 for ADAM-10 over MMPs
    • …
    corecore