430 research outputs found

    Disentangling the role of wild birds in avian metapneumovirus (aMPV) epidemiology: A systematic review and meta-analysis

    Get PDF
    Given the avian metapneumovirus (aMPV) disease burden in poultry worldwide and the evidence of a possible role played by wild birds in the virus epidemiology, the present study summarizes aMPV serological and molecular data on free-ranging avifauna available in the literature by conducting a systematic review and meta-analysis. A computerized literature research was performed on PubMed, Scopus, CAB Direct and Web of Science to identify relevant publications across the period 1990–2021, along with the screening of reference lists. A random-effect model was applied to calculate pooled prevalence estimates with 95% confidence intervals. The inconsistency index statistic (I2) was applied to assess between-study heterogeneity. Subgroup analyses for molecular studies only were performed according to geographical area of samplings, taxonomic order, genus and migration patterns of the birds surveyed. A total of 11 publications on molecular surveys and 6 on serological ones were retained for analysis. The pooled molecular prevalence was 6% (95% CI: 1–13%) and a high between-study heterogeneity was detected (I2 = 96%, p <.01). Moderator analyses showed statistically significant differences according to geographical area studied, taxonomic order and genus. Concerning serological prevalence, a pooled estimate of 14% (95% CI: 1–39%), along with a high between-study heterogeneity, was obtained (I2 = 98%, p <.01). Moderator analysis was not performed due to the scarcity of eligible serological studies included. Overall, molecular and serological evidence suggests that some wild bird taxa could play a role in aMPV epidemiology. Particularly, wild ducks, geese, gulls and pheasants, according to scientific contributions hereby considered, proved to be susceptible to aMPV, and due to host ecology, may act as a viral carrier or reservoir. Further surveys of wild birds are encouraged for a better comprehension of the poultry/wild bird interface in aMPV epidemiology and for better characterizing the virus host breadth

    Infectious bursal disease virus in free-living wild birds: A systematic review and meta-analysis of its sero-viroprevalence on a global scale

    Get PDF
    Infectious bursal disease virus (IBDV) is an economically important pathogen for poultry, whereas knowledge of its occurrence in non-poultry hosts is limited. The objective of this systematic review and meta-analysis is to summarize the up-to-date knowledge about the sero-viroprevalence of IBDV in wild birds on a global scale. A computerized literature research was performed on PubMed, Scopus, CAB Direct and Web of Science to find relevant publications, along with the screening of reference lists. Journal articles, book chapters, scientific correspondences, conference proceedings and short communications on IBDV virological and/or serological surveys in free-living wild birds published between 1970 and 2021 were considered as eligible. Among 184 studies found, 36 original contributions met the pre-established criteria. A random-effect model was applied to calculate pooled seroprevalence estimates with 95% confidence intervals, whereas the paucity of virological studies (n = 6) only allowed a qualitative description of the data. The pooled seroprevalence was estimated to be 6% (95% CI: 3%–9%) and a high heterogeneity was detected (I2= 96%). Sub-group analyses were not performed due to the scarcity of available information about hypothetical moderators. With respect to virological studies, IBDV was detected in Anseriformes, Columbiformes, Galliformes, Passeriformes and Pelecaniformes and different strains related to poultry infection were isolated. Our estimates of serological data showed a moderate exposure of wild birds to IBDV. The susceptibility of different species to IBDV infection underlines their potential role in its epidemiology at least as carriers or spreaders. Indeed, the isolation of IBDV in healthy wild birds with a migratory attitude might contribute to a long-distance spread of the virus and to strain diversity. While a wild reservoir host could not be clearly identified, we believe our work provides useful insights for conducting future surveys which are needed to broaden our knowledge of IBDV occurrence in wild birds

    Protection Conferred by a Live Avian Metapneumovirus Vaccine when Co-Administered with Live La Sota Newcastle Disease Vaccine in Chicks

    Get PDF
    This paper examines the effects on specific pathogen-free (SPF) chicks when avian metapneumovirus (aMPV) and Newcastle disease virus (NDV) La Sota strain vaccines are co-administered. Day-old SPF chicks were divided into five groups. The first group was inoculated with sterile water (SW) and the rest of the groups were inoculated with live NDV vaccine VG/GA by the oculo-oral route. At 21 days-old, the unvaccinated chicks were again inoculated with SW. The four VG/GA-vaccinated groups were further inoculated with (i) SW, (ii) live aMPV vaccine, (iii) live NDV La Sota, or (iv) combined live NDV La Sota and live aMPV, respectively. Chicks were monitored for post-vaccination reactions and oropharyngeal swabs were collected for vaccines detection. Blood samples were collected to detect aMPV ELISA and NDV haemagglutination-inhibition antibodies. Twenty-one days following the second vaccination, six chicks from each group were challenged with virulent NDV or aMPV respectively. Chicks were monitored for clinical signs and mortality and oropharyngeal swabs collected for aMPV detection. Results showed that, when challenged with a virulent aMPV, both chicks previously vaccinated with VG/GA and subsequently given aMPV vaccine singly or in combination with La Sota were equally protected against clinical signs. Chicks that were vaccinated against NDV either once with VG/GA or followed by La Sota (singly or in combination with aMPV) were fully protected when challenged with velogenic NDV. We concluded that simultaneous administration of live aMPV and NDV La Sota vaccines have no adverse effects on protection conferred by either live vaccine

    Vaccine Interaction and Protection against Virulent Avian Metapneumovirus (aMPV) Challenge after Combined Administration of Newcastle Disease and aMPV Live Vaccines to Day-Old Turkeys

    Get PDF
    Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) are among the most impactful pathogens affecting the turkey industry. Since turkeys are routinely immunized against both diseases, the hatchery administration of the combined respective live vaccines would offer remarkable practical advantages. However, the compatibility of NDV and aMPV vaccines has not yet been experimentally demonstrated in this species. To address this issue, an aMPV subtype B live vaccine was administered to day-old poults either alone or in combination with one of two different ND vaccines. The birds were then challenged with a virulent aMPV subtype B strain, clinical signs were recorded and aMPV and NDV vaccine replication and humoral immune response were assessed. All results supported the absence of any interference hampering protection against aMPV, with no significant differences in terms of clinical scoring. In addition, the mean aMPV vaccine viral titers and antibody titers measured in the dual vaccinated groups were comparable or even higher than in the group vaccinated solely against aMPV. Lastly, based on the NDV viral and antibody titers, the combined aMPV and NDV vaccination does not seem to interfere with protection against NDV, although further studies involving an actual ND challenge will be necessary to fully demonstrate this hypothesis

    Genetic heterogeneity among chicken infectious anemia viruses detected in italian fowl

    Get PDF
    Chicken infectious anemia virus (CIAV) is a pathogen of chickens associated with immuno-suppression and with a disease named chicken infectious anemia. The present survey reports an epidemiological study on CIAV distribution in Italian broiler, broiler breeder and backyard chicken flocks. Twenty-five strains were detected by a specifically developed nested PCR protocol, and molecularly characterized by partial VP1 gene or complete genome sequencing. Viral DNA ampli-fication was successfully obtained from non-invasive samples such as feathers and environmental dust. Sequence and phylogenetic analysis showed the circulation of field or potentially vaccine-derived strains with heterogeneous sequences clustered into genogroups II, IIIa, and IIIb. Marker genome positions, reported to be correlated with CIAV virulence, were evaluated in field strains. In conclusion, this is the first survey focused on the molecular characteristics of Italian CIAVs, which have proved to be highly heterogeneous, implementing at the same time a distribution map of field viruses worldwide

    characterization and antimicrobial resistance analysis of avian pathogenic escherichia coli isolated from italian turkey flocks

    Get PDF
    ABSTRACT This study investigated the occurrence of avian pathogenic Escherichia coli (APEC) in a finishing turkey commercial farm, carrying out longitudinal surveys involving 3 consecutive flocks. The diversity and the distribution of the E. coli strains detected during colisepticemia outbreaks were examined. The strains were isolated, serogrouped, assessed for the presence of virulence-associated genes, typed by random amplification of polymorphic DNA (RAPD), and antimicrobial resistance analysis was then carried out. Escherichia coli O78 and O2 were predominantly found. Moreover, based on the somatic antigens used in the study, strains were recovered that were nontypeable. On one occasion, an E. coli O111 strain was found in turkeys. The E. coli isolates differed in terms of antibiotic resistance and RAPD profile. All strains possessed the virulence genes that enabled them to be considered APEC. Strains not only differed between flocks, but also within the same flock. These findings point out the importance of addressing colibacillosis therapy on the basis of a sensitivity test

    Influences of swab types and storage temperatures on isolation and molecular detection of Mycoplasma gallisepticum and Mycoplasma synoviae

    Get PDF
    Routine diagnosis of Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) is performed by collecting oropharyngeal swabs, followed by isolation and/or detection by molecular methods. The storage temperature, storage duration and the type of swab could be critical factors for successful isolation or molecular detection. The aim of this study was to compare the influence of different types of cotton-tipped swab stored at different temperatures, on the detection of MG and MS. To achieve this, combined use of traditional culture analysis (both agar and broth), with modern molecular detection methods was utilized. Performances of wooden and plastic shaft swabs, both without transport medium, were compared. Successful culture of M. gallisepticum was significantly more efficient from plastic swabs when compared to wooden, whereas no difference was seen for the re-isolation of M. synoviae. Storage at 4\ub0C compared to room temperature also increased the efficiency of culture detection for both Mycoplasma species. When stored at room temperature, PCR detection limits of both MG and MS were significantly lower for wooden compared to plastic swabs. The qPCR data showed similar detection limits for both swab types when stored at both temperatures. The results suggest that swabs with a plastic shaft are preferred for MG and MS detection by both culture and PCR. While a lower storage temperature (4\ub0C) is optimal for culture recovery, it seems that both temperatures investigated here are adequate for molecular detection and it is the swab type which carries a greater influence

    Vaccine or field strains: the jigsaw pattern of infectious bronchitis virus molecular epidemiology in Poland

    Get PDF
    Infectious bronchitis (IB), caused by infectious bronchitis virus (IBV), account for severe economic losses in the poultry industry. The continuous emergence of a multitude of IBV variants poses many challenges for its diagnosis and control, and live attenuated vaccines, despite their routine use, still plays a significant role in driving IBV evolution, further complicating the epidemiological scenario. Unfortunately, the impact of different vaccination strategies on IB control, epidemiology, and diagnosis has rarely been investigated. This work presents the results of a large-scale diagnostic survey performed in Poland to study IBV molecular epidemiology and how vaccination may affect the viral circulation in the field. To this purpose, 589 samples were collected between May 2017 and January 2019, tested by reverse transcription-PCR for IBV and sequenced. Vaccine and field strains were discriminated based on genetic and anamnestic information. The most commonly detected lineages were 793B (79%) and variant 2 (17.4%), with sporadic detections of QX, Mass, and D274-like strains. Most of the detected strains had a vaccine origin: 46.3% matched one of the applied vaccines, while 36.5% were genetically related to vaccines not implemented in the respective protocol. Besides their practical value for the proper planning of vaccination protocols in Poland, these results suggest that only a fraction (17.2%) of the circulating strains are field ones, imposing a careful assessment of the actual IBV field menaces. Moreover, phenomena like vaccine spreading and persistence seem to occur commonly, stressing the need to further study the epidemiological consequences of the extensive use of live vaccines

    Molecular characterization of the meq gene of Marek\u2019s disease viruses detected in unvaccinated backyard chickens reveals the circulation of low- and high-virulence strains

    Get PDF
    Marek's disease (MD) is an important lymphoproliferative disease of chickens, caused by Gal lid alphaherpesvirus 2 (GaHV-2). Outbreaks are commonly reported in commercial flocks, but also in backyard chickens. Whereas the molecular characteristics of GaHV-2 strains from the commercial poultry sector have been reported, no recent data are available for the rural sector. To fill this gap, 19 GaHV-2 strains detected in 19 Italian backyard chicken flocks during suspected MD outbreaks were molecularly characterized through an analysis of the meq gene, the major GaHV-2 oncogene. The number of four consecutive prolines (PPPP) within the proline-rich repeats of the Meq transactivation domain, the proline content, and the presence of amino acid (aa) substitutions were determined. Phylogenetic analysis was performed using the Maximum Likelihood method. Sequence analysis revealed a heterogeneous population of GaHV-2 strains circulating in Italian backyard flocks. Seven strains, detected from birds affected by classical MD, showed a unique meq isoform of 418 aa with a very high number of PPPP motifs. Molecular and clinical features are suggestive of a low oncogenic potential of these strains. The remaining 12 strains, detected from flocks experiencing acute MD, transient paralysis, or sudden death, had shorter Meq protein isoforms (298 or 339 aa) with a lower number of PPPP motifs and point mutations interrupting PPPP. These features allow us to assert the high virulence of these strains. These findings reveal the circulation of low and high-virulence GaHV-2 strains in the Italian rural sector
    • …
    corecore