61 research outputs found
Start-up in microgravity and local thermodynamic states of a hybrid loop thermosyphon/pulsating heat pipe
A wickless passive two phase closed loop heat transfer device especially designed for a future implementation on the heat transfer host module of the International Space Station is tested in relevant environment on board a parabolic flight. The tube internal diameter (3 mm) is larger than the static capillary threshold evaluated in normal gravity for this working fluid (FC-72), leading the device to work as a loop thermosyphon on ground and in hyper-gravity conditions, and as a Pulsating Heat Pipe when micro-gravity occurs. Novel start up tests, where the heat load has been provided after the occurrence of microgravity, show that the 20 s microgravity period is enough for the device activation and, most important, that the device activation is purely thermally induced and not affected by the previous acceleration field. Two miniaturized pressure transducers and direct fluid temperature measurement via two micro-thermocouples, allow to provide a detailed insight on the fluid local thermodynamics states both in the evaporator and in the condenser zone during microgravity. It is shown that the two-phase fluid close to the evaporator and the condenser is subjected to several degrees (up to 5 K) of superheating or subcooling. The level of subcooling seems to increase with the heat input level both in terms of temperature difference and in terms of percentage time with respect to the whole microgravity period
Start-Up and Operation of a 3D Hybrid Pulsating Heat Pipe on Board a Sounding Rocket
A large tube may still behave, to a certain extent, as a capillary in a micro-gravity environment. This very basic concept is here applied to a two-phase passive heat transfer device to obtain a new family of hybrid wickless heat pipes. Indeed, a Loop Thermosyphon, which usually consists of a large tube, closed end to end in a loop, evacuated and partially filled with a working fluid and intrinsically gravity assisted, may become a capillary tube in space condition and turn its thermo-fluidic behavior into a Pulsating Heat Pipe. This work presents the results obtained on such a hybrid device heated at 200 W both on board a sounding rocket (ESA REXUS 22, microgravity period ~120 s), and on ground in vertical and anti-gravity orientation. Since no steady state occurred in microgravity conditions, the comparison between flight and ground data focuses on the startup phenomenon, whereas the thorough ground test campaign describes the limits and performances of the device working in thermosyphon mode. The expected thermal behavior in microgravity conditions is between that of a purely conductive tube in anti-gravity conditions on ground and that of a gravity assisted thermosyphon. Since a microgravity period of approximately 120 s is not enough to reach a pseudo steady state regime, further investigation on a longer-term weightless condition is mandatory
Evidence that Prefibrotic Myelofibrosis Is Aligned along a Clinical and Biological Continuum Featuring Primary Myelofibrosis
PURPOSE: In the WHO diagnostic classification, prefibrotic myelofibrosis (pre-MF) is included in the category of primary myelofibrosis (PMF). However, strong evidence for this position is lacking. PATIENTS AND METHODS: We investigated whether pre-MF may be aligned along a clinical and biological continuum in 683 consecutive patients who received a WHO diagnosis of PMF. RESULTS: As compared with PMF-fibrotic type, pre-MF (132 cases) showed female dominance, younger age, higher hemoglobin, higher platelet count, lower white blood cell count, smaller spleen index and higher incidence of splanchnic vein thrombosis. Female to male ratio and hemoglobin steadily decreased, while age increased from pre-MF to PMF- fibrotic type with early and to advanced bone marrow (BM) fibrosis. Likely, circulating CD34+ cells, LDH levels, and frequency of chromosomal abnormalities increased, while CXCR4 expression on CD34+ cells and serum cholesterol decreased along the continuum of BM fibrosis. Median survival of the entire cohort of PMF cases was 21 years. Ninety-eight, eighty-one and fifty-six percent of patients with pre-MF, PMF-fibrotic type with early and with advanced BM fibrosis, respectively, were alive at 10 years from diagnosis. CONCLUSION: Pre-MF is a presentation mode of PMF with a very indolent phenotype. The major consequences of this contention is a new clinical vision of PMF, and the need to improve prognosis prediction of the disease
Apolipoprotein E in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis
Apolipoprotein E in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis.BackgroundHyperlipemia characterizes nephrotic syndrome (NS) and contributes to the progression of the underlying nephropathy. The data in the literature support an implication of apolipoprotein E (apoE) in both hyperlipemia and focal segmental glomerulosclerosis (FSGS), a malignant condition associated with NS.MethodsThe apoE genotype was determined in 209 nephrotic patients, who were classified according to age and their response to steroids as resistant children (N = 96) and adults (43), and steroid dependent (33) and steroid responder (37) children. A total of 123 presented the histological features of FSGS. In a subgroup of 28 patients, serum and urinary levels of apoE and renal deposits were evaluated by immunofluorescence.ResultsThe allelic frequencies of the three major haplotypes γ2, γ3, and γ4 were the same in nephrotic patients versus controls, and homozygosity for γ3γ3 was comparably the most frequent genotype (70 vs. 71%) followed by γ3γ4, γ2γ3, γ2γ4, γ4γ4. Serum levels of apoE were fivefold higher in NS and in FSGS patients than in controls, with a direct correlation with hypercholesterolemia and proteinuria. ApoE genotypes did not influence serum levels. Urinary levels were 1/10,000 of serum with an increment in nephrotic urines. Finally, immunofluorescence demonstrated the absence of apoE in sclerotic glomeruli, while comparably nephrotic patients with membranous nephropathy had an increased glomerular expression of apoE.ConclusionsApoE is dysregulated in NS with a marked increment in serum, which is a part of the complex lipid metabolism. Down-regulation of glomerular apoE instead is a peculiarity of FSGS and may contribute to the pathogenesis of the disease. The normal distribution of apoE genotypes in nephrotic patients with FSGS excludes a pathogenetic role of genetic variants
U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22
U-PHOS Project aims to analyse and characterise the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device consisting of a serpentine capillary tube, evacuated, partially filled with a working fluid and finally sealed. In this configuration, the liquid and vapour phases are randomly distributed in the form of liquid slugs and vapour plugs. The heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. On ground conditions, a small diameter is required in order to obtain a confined slug flow regime. In milli-gravity conditions, buoyancy forces become less intense and the PHP diameter may be increased still maintaining the slug/plug flow configuration typical of the PHP operation. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a Large Diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign
ACCURACY ANALYSIS OF DIRECT INFRARED TEMPERATURE MEASUREMENTS OF TWO-PHASE CONFINED FLOWS
The characterization and modeling of confined two-phase flows is still one of the most challenging and interesting objectives of the scientific community since it both helps the understanding of the thermo-fluid dynamic phenomena and the development of reliable design tools for the industries. The visualization techniques exploited so far in the literature, allowed to accurately describe the two phase hydrodynamic principles but very little information about evolution of the fluid temperature distribution can be found. The present work is devoted to the accuracy analysis of direct infrared temperature measurements of two-phase confined flows by means of a high resolution and fast infrared camera. A test rig is built to calibrate the camera by varying the fluid (n-perfluorhexane) and the ambient temperatures. A lumped parameter radiation model is developed to quantify the effect of the involved parameters (ambient temperature, back screen temperature and its emissivity, tube transmissivity, fluid transmissivity etc.), in case the experimental conditions differ from the calibration. The IR measurements are performed on a real two-phase passive heat transfer device. Considering the uncertainty related to the calibration procedure and the difference between the calibration and the actual experimental conditions, the maximum error of the IR temperature measurements is ±2°C. The IR technique also allowed to detect temperature gradients within the fluid and temporal temperature distributions of relatively fast thermo-fluid dynamic events
- …