4 research outputs found
GDF15 and ACE2 stratify COVID-19 patients according to severity while ACE2 mutations increase infection susceptibility
Coronavirus disease 19 (COVID-19) is a persistent global pandemic with a very heterogeneous disease presentation ranging from a mild disease to dismal prognosis. Early detection of sensitivity and severity of COVID-19 is essential for the development of new treatments. In the present study, we measured the levels of circulating growth differentiation factor 15 (GDF15) and angiotensin-converting enzyme 2 (ACE2) in plasma of severity-stratified COVID-19 patients and uninfected control patients and characterized the in vitro effects and cohort frequency of ACE2 SNPs. Our results show that while circulating GDF15 and ACE2 stratify COVID-19 patients according to disease severity, ACE2 missense SNPs constitute a risk factor linked to infection susceptibility
Lligams funcionals i bioquímics entre els transportadors de nucleòsids i el metabolisme de nucleòtids
[eng] Maintenance of balanced nucleotide pools is necessary for cellular homeostasis. The nucleotide content of the cell is determined by the uptake of nucleosides by specific transporters, the salvage pathway and de novo synthesis of purine and pyrimidine nucleotides. These pathways are highly regulated at different levels and likely to be controlled by mechanisms allowing some sort of coordination among them. In order to decipher possible functional links within this machinery, in this work we have explored the relationship between nucleoside transporters and other elements of nucleotide metabolism. We have studied the interaction and the possible functional link of the human concentrative nucleoside transporter 3 (CNT3) with ADK (adenosine kinase), SAMHD1 (sterile alpha-motif (SAM) and histidine-aspartate (HD) domain-containing protein 1) and QDPR (quinoid dihydropteridin reductase), all of them somehow related to nucleotide metabolism. Biochemical and functional validation of these interactions has evidenced the interconnection between CNT3 and the machinery implicated in nucleotide metabolism. Furthermore, nucleoside analogues are used in the treatment of cancer but they are often administered as pro-drugs. Their metabolic activation takes profit of different metabolic steps known to be implicated in nucleotide metabolism. Thus, changes in these pathways can be extremely relevant in determining drug activation and action in cancer therapy. Recently, combinations of the nucleoside analog Ara-C (cytarabine) and FMS-like tyrosine kinase (FLT3) inhibitors have been developed as first line treatments of acute myeloid leukemia (AML). We have observed that FLT3 positively correlates with enzymes implicated in Ara-C metabolism such as deoxycytidine kinase (dCK), 5’-nucleotidase cN-II and SAMHD1. We have also demonstrated a link among these elements associated with FLT3 inhibition which supports the possibility of coordinated regulation of different elements of the nucleotide metabolic network by this tyrosine kinase receptor. These observations also suggest that, to avoid chemoresistance, it is important to consider the schedule of administration of Ara-C and FLT3 inhibitors in the treatment of AML. Overall, this study provides novel evidence suggesting the existence of protein networks able to promote coordinate regulation of the machinery implicated in nucleotide metabolism
Therapeutic Potential of Mitotic Kinases’ Inhibitors in Cancers of the Gastrointestinal System
Mitosis entails mechanistic changes required for maintaining the genomic integrity in all dividing cells. The process is intricate and temporally and spatially regulated by the ordered series of activation and de-activation of protein kinases. The mitotic kinases ensure the stepwise progression of entry into mitosis after the G2 phase of the cell cycle, followed by prophase, pro-metaphase, metaphase, anaphase, telophase, and subsequently cytokinesis and birth of two daughter cells with equal segregation and distribution of the genome. The major mitotic kinases include cyclin-dependent kinase 1 (CDK1), Aurora A and B Kinases, and Polo-Like-Kinase 1 (PLK1), among others. Overexpression of some of these kinases has been reported in many cancers as the mitotic fidelity and genome integrity are interlinked and dependent on these regulators, the native irregularities in these factors can be targeted as therapeutic strategies for various cancers. Here, we report and summarize the recent updates on the literature describing the various mitotic inhibitors targeting kinases, which can be used as potential therapeutic interventions for gastrointestinal cancers including gastric cancer, liver cancer, pancreatic cancer and colorectal cancer
Organoids: An Emerging Tool to Study Aging Signature across Human Tissues. Modeling Aging with Patient-Derived Organoids
The biology of aging is focused on the identification of novel pathways that regulate the underlying processes of aging to develop interventions aimed at delaying the onset and progression of chronic diseases to extend lifespan. However, the research on the aging field has been conducted mainly in animal models, yeast, Caenorhabditis elegans, and cell cultures. Thus, it is unclear to what extent this knowledge is transferable to humans since they might not reflect the complexity of aging in people. An organoid culture is an in vitro 3D cell-culture technology that reproduces the physiological and cellular composition of the tissues and/or organs. This technology is being used in the cancer field to predict the response of a patient-derived tumor to a certain drug or treatment serving as patient stratification and drug-guidance approaches. Modeling aging with patient-derived organoids has a tremendous potential as a preclinical model tool to discover new biomarkers of aging, to predict adverse outcomes during aging, and to design personalized approaches for the prevention and treatment of aging-related diseases and geriatric syndromes. This could represent a novel approach to study chronological and/or biological aging, paving the way to personalized interventions targeting the biology of aging