22 research outputs found

    Trypanosoma cruzi Infection Modulates In Vivo Expression of Major Histocompatibility Complex Class II Molecules on Antigen-Presenting Cells and T-Cell Stimulatory Activity of Dendritic Cells in a Strain-Dependent Manner

    No full text
    A striking feature of Chagas' disease is the diversity of clinical presentations. Such variability may be due to the heterogeneity among Trypanosoma cruzi isolates or to the host immune response. Employing two strains which differ in their virulence, we investigated the effect of in vivo infection on professional antigen-presenting cells (APC). Acute infection with the virulent RA strain downregulated the expression of major histocompatibility complex (MHC) class II on splenic dendritic cells (DC) and inhibited its induction on peritoneal macrophages and splenic B cells. It also impaired the ability of DC to prime allogeneic T cells and to form homotypic clusters, suggesting a low maturation state of these cells. In contrast, the low-virulence K98 strain maintained the expression of MHC class II on DC or stimulated it on peritoneal macrophages and B cells and preserved DC's T-cell priming capacity and homotypic clustering. DC from RA-infected mice elicited a lower activation of T. cruzi-specific T-cell proliferation than those from K98-infected mice. APC from RA-infected mice that reached the chronic phase of infection restored MHC class II levels to those found in K98-infected mice and upregulated costimulatory molecules expression, suggesting that the immunosuppression caused by this strain is only transient. Taken together, the results indicate that in vivo infection with T. cruzi modulates APC functionality and that this is accomplished in a strain-dependent manner

    Identification of novel vaccine candidates for Chagas' disease by immunization with sequential fractions of a trypomastigote cDNA expression library

    No full text
    The protozoan Trypanosoma cruzi is the etiological agent of Chagas' disease, a major chronic infection in Latin America. Currently, there are neither effective drugs nor vaccines for the treatment or prevention of the disease. Several T. cruzi surface antigens are being tested as vaccines but none of them proved to be completely protective, probably because they represent only a limited repertoire of all the possible T. cruzi target molecules. Taking into account that the trypomastigote stage of the parasite must express genes that allow the parasite to disseminate into the tissues and invade cells, we reasoned that genes preferentially expressed in trypomastigotes represent potential targets for immunization. Here we screened an epimastigote-subtracted trypomastigote cDNA expression library by genetic immunization, in order to find new vaccine candidates for Chagas' disease. After two rounds of immunization and challenge with trypomastigotes, this approach led to the identification of a pool of 28 gene fragments that improved in vivo protection. Sequence analysis of these putative candidates revealed that 19 out of 28 (67.85%) of the genes were hypothetical proteins or unannotated T. cruzi open reading frames, which certainly would not have been identified by other methods of vaccine discovery

    Internal travel and risk of dengue transmission in Colombia

    No full text
    Human behavior plays a key role in the dynamics of dengue transmission. However, research on the relationship between human movement and dengue transmission within endemic countries is limited. From January 2008 to December 2011, the authors of this study conducted a retrospective analysis of imported dengue infections in Bogotá, Colombia. Bogotá is a vector-transmission-free city that is also the capital district and most populated municipality in Colombia. The study revealed that 1) Bogotá inhabitants acquired dengue infection in diverse localities throughout the country but the largest proportion of cases (35.6%) were contracted at popular tourist destinations in dengue-endemic areas near Bogotá (<200-km radius from city limits), and 2) the number of imported dengue cases increased after major holidays, a transmission pattern not seen in dengue-endemic areas, where disease incidence correlates with rainy periods. It is therefore recommended that physicians consider the effect of travel when diagnosing their patients' illnesses, especially outside dengue-endemic areas where diagnosis of the disease can be challenging due to its nonspecific symptoms. The study also showed that analysis of dengue cases imported to regions free of vector transmission can generate an evidence-based model for characterizing the impact of human movement on the spread of diseases like dengue in countries where they are endemic

    The protein family TcTASV-C is a novel Trypanosoma cruzi virulence factor secreted in extracellular vesicles by trypomastigotes and highly expressed in bloodstream forms.

    Get PDF
    TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage of Trypanosoma cruzi. We have previously shown that TcTASV-C is located at the parasite surface and secreted to the medium. Here we report that the expression of different TcTASV-C genes occurs simultaneously at the trypomastigote stage and while some secreted and parasite-associated products are found in both fractions, others are different. Secreted TcTASV-C are mainly shedded through trypomastigote extracellular vesicles, of which they are an abundant constituent, despite its scarce expression on culture-derived trypomastigotes. In contrast, TcTASV-C is highly expressed in bloodstream trypomastigotes; its upregulation in bloodstream parasites was observed in different T. cruzi strains and was specific for TcTASV-C, suggesting that some host-molecules trigger TcTASV-C expression. TcTASV-C is also strongly secreted by bloodstream parasites. A DNA prime-protein boost immunization scheme with TcTASV-C was only partially effective to control the infection in mice challenged with a highly virulent T. cruzi strain. Vaccination triggered a strong humoral response that delayed the appearance of bloodstream trypomastigotes at the early phase of the infection. Linear epitopes recognized by vaccinated mice were mapped within the TcTASV-C family motif, suggesting that blockade of secreted TcTASV-C impacts on the settlement of infection. Furthermore, although experimental and naturally T. cruzi-infected hosts did not react with antigens from extracellular vesicles, vaccinated and challenged mice recognized not only TcTASV-C but also other vesicle-antigens. We hypothesize that TcTASV-C is involved in the establishment of the initial T. cruzi infection in the mammalian host. Altogether, these results point towards TcTASV-C as a novel secreted virulence factor of T. cruzi trypomastigotes

    A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors

    No full text
    Trypanosoma cruzi carbonic anhydrase (TcCA) has recently emerged as an interesting target for the design of new compounds to treat Chagas disease. In this study we report the results of a structure-based virtual screening campaign to identify novel and selective TcCA inhibitors. The combination of properly validated computational methodologies such as comparative modelling, molecular dynamics and docking simulations allowed us to find high potency hits, with KI values in the nanomolar range. The compounds also showed trypanocidal effects against T. cruzi epimastigotes and trypomastigotes. All the candidates are selective for inhibiting TcCA over the human isoform CA II, which is encouraging in terms of possible therapeutic safety and efficacy

    Cascade Ligand- and Structure-Based Virtual Screening to Identify New Trypanocidal Compounds Inhibiting Putrescine Uptake

    Get PDF
    Chagas disease is a neglected tropical disease endemic to Latin America, though migratory movements have recently spread it to other regions. Here, we have applied a cascade virtual screening campaign combining ligand- and structure-based methods. In order to find novel inhibitors of putrescine uptake in Trypanosoma cruzi, an ensemble of linear ligand-based classifiers obtained by has been applied as initial screening filter, followed by docking into a homology model of the putrescine permease TcPAT12. 1,000 individual linear classifiers were inferred from a balanced dataset. Subsequently, different schemes were tested to combine the individual classifiers: MIN operator, average ranking, average score, average voting, with MIN operator leading to the best performance. The homology model was based on the arginine/agmatine antiporter (AdiC) from Escherichia coli as template. It showed 64% coverage of the entire query sequence and it was selected based on the normalized Discrete Optimized Protein Energy parameter and the GA341 score. The modeled structure had 96% in the allowed area of Ramachandran's plot, and none of the residues located in non-allowed regions were involved in the active site of the transporter. Positivity Predictive Value surfaces were applied to optimize the score thresholds to be used in the ligand-based virtual screening step: for that purpose Positivity Predictive Value was charted as a function of putative yields of active in the range 0.001–0.010 and the Se/Sp ratio. With a focus on drug repositioning opportunities, DrugBank and Sweetlead databases were subjected to screening. Among 8 hits, cinnarizine, a drug frequently prescribed for motion sickness and balance disorder, was tested against T. cruzi epimastigotes and amastigotes, confirming its trypanocidal effects and its inhibitory effects on putrescine uptake. Furthermore, clofazimine, an antibiotic with already proven trypanocidal effects, also displayed inhibitory effects on putrescine uptake. Two other hits, meclizine and butoconazole, also displayed trypanocidal effects (in the case of meclizine, against both epimastigotes and amastigotes), without inhibiting putrescine uptake

    TcTASV-C is mostly secreted in EVs from trypomastigotes of CL Brener strain.

    No full text
    <p><b>(A)</b> Representative TEMs of large (V2) and small (V16) EVs. Vesicles are indicated by black bars and clusters formed by ultracentrifugation are marked with black arrowheads. (<b>B)</b> 30x10<sup>6</sup> trypomastigotes and the secretion equivalent of small EVs (V16), large EVs (V2) and EV-free fraction (VF) were processed by western blot with antisera against TcTASV-C, HSP70 and TcSR62.</p

    Anti-TcTASV-C antibody response in mice after vaccination.

    No full text
    <p>Serum samples were obtained before the first (Pre) and 15 days after the last dose (Post) of immunization with TcTASV-C or Control schemes. <b>(A)</b> Total IgG, <b>(B)</b> IgG2a and (<b>C</b>) IgG1 responses against rTcTASV-C<sub>GST</sub> were determined by ELISA. Each dot represents one individual animal. Absorbance against GST was subtracted. Dotted line indicates the cut-off (***p< 0.005 vs control group, one-way ANOVA).</p
    corecore