1,644 research outputs found

    Axions and White Dwarfs

    Full text link
    White dwarfs are almost completely degenerate objects that cannot obtain energy from the thermonuclear sources and their evolution is just a gravothermal process of cooling. The simplicity of these objects, the fact that the physical inputs necessary to understand them are well identified, although not always well understood, and the impressive observational background about white dwarfs make them the most well studied Galactic population. These characteristics allow to use them as laboratories to test new ideas of physics. In this contribution we discuss the robustness of the method and its application to the axion case.Comment: 4 pages, 1 figure, to appear in the Proceedings for the 6th Patras meeting on Axions, WIMPs and WISP

    Effect of manganese doping on the size effect of lead zirconate titanate thin films and the extrinsic nature of dead layers

    Full text link
    We have investigated the size effect in lead zirconate titanate (PZT) thin films with a range of manganese (Mn) doping concentrations. We found that the size effect in the conventional Pt/PZT/Pt thin-film capacitors could be systematically reduced and almost completely eliminated by increasing Mn doping concentration. The interfacial layer at the electrode-film interface appears to disappear almost entirely for the PZT films with 2% Mn doping levels, confirmed by the fits using the conventional in-series capacitor model. Our work indicates that the size effect in ferroelectrics is extrinsic in nature, supporting the work by Saad et al. Other implications of our results have also been discussed. By comparing a variety of experimental studies in the literature we propose a scenario that the dead layer between PZT (or barium strontium titanate, BST) and metal electrodes such as Pt and Au might have a defective pyrochlore/fluorite structure (possibly with a small portion of ferroelectric perovskite phase).Comment: 21 pages, 6 figure

    Strain Gradients in Epitaxial Ferroelectrics

    Get PDF
    X-ray analysis of ferroelectric thin layers of Ba1/2Sr1/2TiO3 with different thickness reveals the presence of internal strain gradients across the film thickness and allows us to propose a functional form for the internal strain profile. We use this to calculate the direct influence of strain gradient, through flexoelectric coupling, on the degradation of the ferroelectric properties of thin films with decreasing thickness, in excellent agreement with the observed behaviour. This work highlights the link between strain relaxation and strain gradients in epitaxial films, and shows the pressing need to avoid strain gradients in order to obtain thin ferroelectrics with bulk-like properties.Comment: 4 pages, 3 embedded figures (1 color), revTex

    Evaluation of computer-based target achievement tests for myoelectric control

    Get PDF
    Real-Time evaluation of novel prosthetic control schemes is critical for translational research on artificial limbs. Recently, two computer-based, real-Time evaluation tools, the target achievement control (TAC) test and the Fitts' law test (FLT), have been proposed to assess real-Time controllability. Whereas TAC tests provides an anthropomorphic visual representation of the limb at the cost of confusing visual feedback, FLT clarifies the current and target locations by simplified non-Anthropomorphic representations. Here, we investigated these two approaches and quantified differences in common performance metrics that can result from the chosen method of visual feedback. Ten able-bodied and one amputee subject performed target achievement tasks corresponding to the FLT and TAC test with equivalent indices of difficulty. Ablebodied subjects exhibited significantly (p <0.05) better completion rate, path efficiency, and overshoot when performing the FLT, although no significant difference was seen in throughput performance. The amputee subject showed significantly better performance in overshoot at the FLT, but showed no significant difference in completion rate, path efficiency, and throughput. Results from the FLT showed a strong linear relationship between the movement time and the index of difficulty (R2 D 0:96), whereas TAC test results showed no apparent linear relationship (R2 D 0:19). These results suggest that in relatively similar conditions, the confusing location of virtual limb representation used in the TAC test contributed to poorer performance. Establishing an understanding of the biases of various evaluation protocols is critical to the translation of research into clinical practice

    Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3

    Full text link
    We have analyzed the morphology of ferroelectric domains in very thin films of multiferroic BiFeO3. Unlike the more common stripe domains observed in thicker films BiFeO3 or in other ferroics, the domains tend not to be straight, but irregular in shape, with significant domain wall roughening leading to a fractal dimensionality. Also contrary to what is usually observed in other ferroics, the domain size appears not to scale as the square root of the film thickness. A model is proposed in which the observed domain size as a function of film thickness can be directly linked to the fractal dimension of the domains.Comment: 4 pages, 3 figure

    The Catalina Real-time Transient Survey

    Get PDF
    The Catalina Real-time Transient Survey (CRTS) currently covers 33,000 deg^2 of the sky in search of transient astrophysical events, with time baselines ranging from 10 minutes to ~7 years. Data provided by the Catalina Sky Survey provides an unequaled baseline against which >4,000 unique optical transient events have been discovered and openly published in real-time. Here we highlight some of the discoveries of CRTS.Comment: To appear in proc. IAU Symp. 285, "New Horizons in Time Domain Astronomy", eds. E. Griffin et al., Cambridge Univ. Press (2012), 3 page

    Impact of layer defects in ferroelectric thin films

    Full text link
    Based on a modified Ising model in a transverse field we demonstrate that defect layers in ferroelectric thin films, such as layers with impurities, vacancies or dislocations, are able to induce a strong increase or decrease of the polarization depending on the variation of the exchange interaction within the defect layers. A Green's function technique enables us to calculate the polarization, the excitation energy and the critical temperature of the material with structural defects. Numerically we find the polarization as function of temperature, film thickness and the interaction strengths between the layers. The theoretical results are in reasonable accordance to experimental datas of different ferroelectric thin films.Comment: 17 pages, 8 figure

    Multi-epoch Doppler tomography and polarimetry of QQ Vul

    Get PDF
    We present multi-epoch high-resolution spectroscopy and photoelectric polarimetry of the long-period polar (AM Herculis star) QQ Vul. The blue emission lines show several distinct components, the sharpest of which can unequivocally be assigned to the illuminated hemisphere of the secondary star and used to trace its orbital motion. This narrow emission line can be used in combination with Nai-absorption lines from the photosphere of the companion to build a stable long-term ephemeris for the star: inferior conjunction of the companion occurs at HJD = 244 8446.4710(5)+E×0. d 15452011(11). The polarization curves are dissimilar at different epochs, thus supporting the idea of fundamental changes of the accretion geometry, e.g. between one- and two-pole accretion modes. The linear polarization pulses display a random scatter by 0.2 phase units and are not suitable for the determination of the binary period. The polarization data suggest that the magnetic (dipolar) axis has a co-latitude of 23 ◦ , an azimuth of −50 ◦, and an orbital inclination between 50 ◦ and 70 ◦. Doppler images of blue emission and red absorption lines show a clear separatio
    corecore