17 research outputs found

    Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation

    Get PDF
    We present seasonal precipitation reconstructions for European land areas (30°W to 40°E/30-71°N; given on a 0.5°×0.5° resolved grid) covering the period 1500-1900 together with gridded reanalysis from 1901 to 2000 (Mitchell and Jones 2005). Principal component regression techniques were applied to develop this dataset. A large variety of long instrumental precipitation series, precipitation indices based on documentary evidence and natural proxies (tree-ring chronologies, ice cores, corals and a speleothem) that are sensitive to precipitation signals were used as predictors. Transfer functions were derived over the 1901-1983 calibration period and applied to 1500-1900 in order to reconstruct the large-scale precipitation fields over Europe. The performance (quality estimation based on unresolved variance within the calibration period) of the reconstructions varies over centuries, seasons and space. Highest reconstructive skill was found for winter over central Europe and the Iberian Peninsula. Precipitation variability over the last half millennium reveals both large interannual and decadal fluctuations. Applying running correlations, we found major non-stationarities in the relation between large-scale circulation and regional precipitation. For several periods during the last 500years, we identified key atmospheric modes for southern Spain/northern Morocco and central Europe as representations of two precipitation regimes. Using scaled composite analysis, we show that precipitation extremes over central Europe and southern Spain are linked to distinct pressure patterns. Due to its high spatial and temporal resolution, this dataset allows detailed studies of regional precipitation variability for all seasons, impact studies on different time and space scales, comparisons with high-resolution climate models as well as analysis of connections with regional temperature reconstruction

    A European pattern climatology 1766-2000

    Get PDF
    Using monthly independently reconstructed gridded European fields for the 500hPa geopotential height, temperature, and precipitation covering the last 235years we investigate the temporal and spatial evolution of these key climate variables and assess the leading combined patterns of climate variability. Seasonal European temperatures show a positive trend mainly over the last 40years with absolute highest values since 1766. Precipitation indicates no clear trend. Spatial correlation technique reveals that winter, spring, and autumn covariability between European temperature and precipitation is mainly influenced by advective processes, whereas during summer convection plays the dominant role. Empirical Orthogonal Function analysis is applied to the combined fields of pressure, temperature, and precipitation. The dominant patterns of climate variability for winter, spring, and autumn resemble the North Atlantic Oscillation and show a distinct positive trend during the past 40years for winter and spring. A positive trend is also detected for summer pattern 2, which reflects an increased influence of the Azores High towards central Europe and the Mediterranean coinciding with warm and dry conditions. The question to which extent these recent trends in European climate patterns can be explained by internal variability or are a result of radiative forcing is answered using cross wavelets on an annual basis. Natural radiative forcing (solar and volcanic) has no imprint on annual European climate patterns. Connections to CO2 forcing are only detected at the margins of the wavelets where edge effects are apparent and hence one has to be cautious in a further interpretatio

    Seasonal temperatures for the past ∼400years reconstructed from diatom and chironomid assemblages in a high-altitude lake (Lej da la Tscheppa, Switzerland)

    Get PDF
    We analysed a 42cm long sediment record from Lej da la Tscheppa, a high-altitude lake (2,616ma.s.l.) in the Upper Engadine valley (Switzerland) for subfossil diatoms, chironomids and pollen. The chronology of the top 21cm of the record was established using 210Pb analysis using a constant-rate-of-supply model, and validated with 137Cs measurements and the content of spheroidal carbonaceous particles. A tentative chronology for the lower part of the core was obtained through extrapolation of the sedimentation rates in the uppermost part of the record. Pollen assemblages in the record reflect regional changes in forestation and land-use patterns in the Upper Engadine valley and show no evidence of significant local human activity in the lake's catchment. Diatom assemblages record a distinct increase in planktonic taxa since the early 19th century, suggesting a decrease in the duration of ice-cover. In contrast, chironomid assemblages remained stable during a large part of the record. We applied an established chironomid-based July air temperature transfer function and a newly developed diatom-based spring air temperature transfer function to reconstruct past seasonal air temperature changes at Lej da la Tscheppa. The reconstructions indicate a diatom-inferred warming trend in spring temperatures during the past ca. 400years, whereas chironomid-inferred summer temperatures suggest a slight cooling trend. These biota-based reconstructions are in good agreement with the centennial-scale temperature trend in an independent reconstruction of regional temperatures in the Upper Engadine region based on instrumental records and documentary proxy evidence from the Alps. Our results suggest that, in high-altitude lakes, independent chironomid- and diatom-based seasonal temperature reconstruction is possible and can be successfully used to track seasonal temperature trend

    Climate Variability-Observations, Reconstructions, and Model Simulations for the Atlantic-European and Alpine Region from 1500-2100 AD

    Get PDF
    A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to "lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate model

    Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation

    Get PDF
    We present seasonal precipitation reconstructions for European land areas (30°W to 40°E/30–71°N; given on a 0.5°×0.5° resolved grid) covering the period 1500–1900 together with gridded reanalysis from 1901 to 2000 (Mitchell and Jones 2005). Principal component regression techniques were applied to develop this dataset. A large variety of long instrumental precipitation series, precipitation indices based on documentary evidence and natural proxies (tree-ring chronologies, ice cores, corals and a speleothem) that are sensitive to precipitation signals were used as predictors. Transfer functions were derived over the 1901–1983 calibration period and applied to 1500–1900 in order to reconstruct the large-scale precipitation fields over Europe. The performance (quality estimation based on unresolved variance within the calibration period) of the reconstructions varies over centuries, seasons and space. Highest reconstructive skill was found for winter over central Europe and the Iberian Peninsula. Precipitation variability over the last half millennium reveals both large interannual and decadal fluctuations. Applying running correlations, we found major non-stationarities in the relation between large-scale circulation and regional precipitation. For several periods during the last 500 years, we identified key atmospheric modes for southern Spain/northern Morocco and central Europe as representations of two precipitation regimes. Using scaled composite analysis, we show that precipitation extremes over central Europe and southern Spain are linked to distinct pressure patterns. Due to its high spatial and temporal resolution, this dataset allows detailed studies of regional precipitation variability for all seasons, impact studies on different time and space scales, comparisons with high-resolution climate models as well as analysis of connections with regional temperature reconstructions

    Temperature and precipitation variability in the European Alps since 1500

    No full text
    High-resolution temperature and precipitation variations and their seasonal extremes since 1500 are presented for the European Alps (43.25–48.25°N and 4.25–16.25°E). The spatial resolution of the gridded reconstruction is given by 0.5° × 0.5° and monthly (seasonal) grids are reconstructed back to 1659 (1500–1658). The reconstructions are based on a combination of long instrumental station data and documentary proxy evidence applying principal component regression analysis. Annual, winter and summer Alpine temperatures indicate a transition from cold conditions prior to 1900 to present day warmth. Very harsh winters occurred at the turn of the seventeenth century. Warm summers were recorded around 1550, during the second half of the eighteenth century and towards the end of the twentieth century. The years 1994, 2000, 2002, and particularly 2003 were the warmest since 1500. Unlike temperature, precipitation variation over the European Alps showed no significant low-frequency trend and increased uncertainty back to 1500. The years 1540, 1921 and 2003 were very likely the driest in the context of the last 500 years. Running correlations between the North Atlantic Oscillation Index (NAOI) and the Alpine temperature and precipitation reconstructions demonstrate the importance of this mode in explaining Alpine winter climate over the last centuries. Winter NAOI correlates positively with Alpine temperatures and negatively with precipitation. These correlations, however, are temporally unstable. We conclude that the Alps are situated in a band of varying influence of the NAO, and that other atmospheric circulation modes controled Alpine temperature and precipitation variability through the recent past. Copyright © 2005 Royal Meteorological Societ

    A European pattern climatology 1766-2000

    Get PDF

    Northern hemispheric trends of pressure indices and atmospheric circulation patterns in observations, reconstructions, and coupled GCM simulations

    Get PDF
    The decadal trend behavior of the Northern Hemisphere atmospheric circulation is investigated utilizing long-term simulations with different state-of-the-art coupled general circulation models (GCMs) for present-day climate conditions (1990), reconstructions of the past 500 yr, and observations. The multimodel simulations show that strong positive winter North Atlantic Oscillation (NAO) trends are connected with the underlying sea surface temperature (SST) and exhibit an SST tripole trend pattern and a northward shift of the storm-track tail. Strong negative winter trends of the Aleutian low are associated with SST changes in the El Niño–Southern Oscillation (ENSO) region and a westward shift of the storm track in the North Pacific. The observed simultaneous appearance of strong positive NAO and negative Aleutian low trends is very unlikely to occur by chance in the unforced simulations and reconstructions. The positive winter NAO trend of the last 50 yr is not statistically different from the level of internal atmosphere–ocean variability. The unforced simulations also show a strong link between positive SST trends in the ENSO region and negative Aleutian low trends. With much larger observed SST trends in the ENSO region, this suggests that the observed negative Aleutian low trend is possibly influenced by external forcing, for example, global warming, volcanism, and/or solar activity change
    corecore