46,053 research outputs found

    Entanglement of two-qubit photon beam by magnetic field

    Full text link
    We have studied the possibility of affecting the entanglement measure of 2-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, by the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact with both the photons and the magnetic field. The possibility of exact theoretical analysis of this scheme is based on known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measure of the photon beam as a function of the applied magnetic field and parameters of the electron medium

    Cabibbo-suppressed non-leptonic B- and D-decays involving tensor mesons

    Get PDF
    The Cabibbo-suppressed non-leptonic decays of B (and D) mesons to final states involving tensor mesons are computed using the non-relativistic quark model of Isgur-Scora-Grinstein-Wise with the factorization hypothesis. We find that some of these B decay modes, as B --> (K^*, D^*)D^*_2, can have branching ratios as large as 6 x 10^{-5} which seems to be at the reach of future B factories.Comment: Latex, 11 pages, to appear in Phys. Rev.

    Literacy: A cultural influence on functional left-right differences in the inferior parietal cortex

    Get PDF
    The current understanding of hemispheric interaction is limited. Functional hemispheric specialization is likely to depend on both genetic and environmental factors. In the present study we investigated the importance of one factor, literacy, for the functional lateralization in the inferior parietal cortex in two independent samples of literate and illiterate subjects. The results show that the illiterate group are consistently more right-lateralized than their literate controls. In contrast, the two groups showed a similar degree of left-right differences in early speech-related regions of the superior temporal cortex. These results provide evidence suggesting that a cultural factor, literacy, influences the functional hemispheric balance in reading and verbal working memory-related regions. In a third sample, we investigated grey and white matter with voxel-based morphometry. The results showed differences between literacy groups in white matter intensities related to the mid-body region of the corpus callosum and the inferior parietal and parietotemporal regions (literate > illiterate). There were no corresponding differences in the grey matter. This suggests that the influence of literacy on brain structure related to reading and verbal working memory is affecting large-scale brain connectivity more than grey matter per se

    Spin and pseudospin symmetries in the antinucleon spectrum of nuclei

    Full text link
    Spin and pseudospin symmetries in the spectra of nucleons and antinucleons are studied in a relativistic mean-field theory with scalar and vector Woods-Saxon potentials, in which the strength of the latter is allowed to change. We observe that, for nucleons and antinucleons, the spin symmetry is of perturbative nature and it is almost an exact symmetry in the physical region for antinucleons. The opposite situation is found in the pseudospin symmetry case, which is better realized for nucleons than for antinucleons, but is of dynamical nature and cannot be viewed in a perturbative way both for nucleons and antinucleons. This is shown by computing the spin-orbit and pseudospin-orbit couplings for selected spin and pseudospin partners in both spectra.Comment: 8 figures, uses revtex 4.1 macro

    Pseudospectral versus finite-differences schemes in the numerical integration of stochastic models of surface growth

    Full text link
    We present a comparison between finite differences schemes and a pseudospectral method applied to the numerical integration of stochastic partial differential equations that model surface growth. We have studied, in 1+1 dimensions, the Kardar, Parisi and Zhang model (KPZ) and the Lai, Das Sarma and Villain model (LDV). The pseudospectral method appears to be the most stable for a given time step for both models. This means that the time up to which we can follow the temporal evolution of a given system is larger for the pseudospectral method. Moreover, for the KPZ model, a pseudospectral scheme gives results closer to the predictions of the continuum model than those obtained through finite difference methods. On the other hand, some numerical instabilities appearing with finite difference methods for the LDV model are absent when a pseudospectral integration is performed. These numerical instabilities give rise to an approximate multiscaling observed in the numerical simulations. With the pseudospectral approach no multiscaling is seen in agreement with the continuum model.Comment: 13 single column pages, RevTeX, 6 eps fig

    Structural study of the interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) in aqueous solution

    Get PDF
    The interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) was studied in aqueous solution using a combination of multinuclear NMR and EPR spectroscopies, as well as potentiometry and cyclic voltammetry. The different species in solution were identified and characterized, and their pKa values and stability constants determined. The vanadium complexes formed in solution are strongly dependent on media composition (ionic strength, presence of buffer), pH and metal-to-ligand ratio (M:L). Two major species -- V(V)/dmpp and V(V)/(dmpp)2 -- are formed in a 140 mM NaCl solution within the pH range 4.5 to 9.0, when M:L=1:2. In the presence of excess ligand (M:L<=1:5), only the 1:2 complex is present, and at pH<4 paramagnetic species are detected by EPR in solution, thus indicating a reducing capacity of the ligand. Cyclic voltammetry shows that redox processes in solution are not just electron transfer, but are accompanied by chemical reactions. The pKa values and stability constants were determined both by 51V NMR spectroscopy and potentiometry. The present results have a particular interest in the understanding of the aqueous solution chemistry in aerobic conditions of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato) oxovanadium(IV) complex, VO(dmpp)2, a vanadium compound with potential insulin-mimetic properties.http://www.sciencedirect.com/science/article/B6TGG-40X8DKT-3C/1/3226f220763b348a4f3d74ae0fcd0e2
    corecore