23,520 research outputs found
Unstable particles versus resonances in impurity systems, conductance in quantum wires
We compute the DC conductance for a homogeneous sine-Gordon model and an
impurity system of Luttinger liquid type by means of the thermodynamic Bethe
ansatz and standard potential scattering theory. We demonstrate that unstable
particles and resonances in impurity systems lead to a sharp increase of the
conductance as a function of the temperature, which is characterized by the
Breit-Wigner formula.Comment: 5 pages Latex, 1 figure replaced, version to appear in J. Phys.
Entanglement Content of Quantum Particle Excitations II. Disconnected Regions and Logarithmic Negativity
In this paper we study the increment of the entanglement entropy and of the (replica) logarithmic negativity in a zero-density excited state of a free massive bosonic theory, compared to the ground state. This extends the work of two previous publications by the same authors. We consider the case of two disconnected regions and find that the change in the entanglement entropy depends only on the combined size of the regions and is independent of their connectivity. We subsequently generalize this result to any number of disconnected regions. For the replica negativity we find that its increment is a polynomial with integer coefficients depending only on the sizes of the two regions. The logarithmic negativity turns out to have a more complicated functional structure than its replica version, typically involving roots of polynomials on the sizes of the regions. We obtain our results by two methods already employed in previous work: from a qubit picture and by computing four-point functions of branch point twist fields in finite volume. We test our results against numerical simulations on a harmonic chain and find excellent agreement
Bound states of bosons and fermions in a mixed vector-scalar coupling with unequal shapes for the potentials
The Klein-Gordon and the Dirac equations with vector and scalar potentials
are investigated under a more general condition, . These intrinsically relativistic and isospectral problems
are solved in a case of squared hyperbolic potential functions and bound states
for either particles or antiparticles are found. The eigenvalues and
eigenfuntions are discussed in some detail and the effective Compton wavelength
is revealed to be an important physical quantity. It is revealed that a boson
is better localized than a fermion when they have the same mass and are
subjected to the same potentials.Comment: 3 figure
Applications of quantum integrable systems
We present two applications of quantum integrable systems. First, we predict
that it is possible to generate high harmonics from solid state devices by
demostrating that the emission spectrum for a minimally coupled laser field of
frequency to an impurity system of a quantum wire, contains multiples
of the incoming frequency. Second, evaluating expressions for the conductance
in the high temperature regime we show that the caracteristic filling fractions
of the Jain sequence, which occur in the fractional quantum Hall effect, can be
obtained from quantum wires which are described by minimal affine Toda field
theories.Comment: 25 pages of LaTex, 4 figures, based on talk at the 6-th international
workshop on conformal field theories and integrable models, (Chernogolovka,
September 2002
Supernova Remnant Kes 17: Efficient Cosmic Ray Accelerator inside a Molecular Cloud
Supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number
of remnants detected across the electromagnetic spectrum. In this paper, we
analyze recent radio, X-ray, and gamma-ray observations of this object,
determining that efficient cosmic ray acceleration is required to explain its
broadband non-thermal spectrum. These observations also suggest that Kes 17 is
expanding inside a molecular cloud, though our determination of its age depends
on whether thermal conduction or clump evaporation is primarily responsible for
its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray
acceleration in Kes 17 supports recent theoretical work that the strong
magnetic field, turbulence, and clumpy nature of molecular clouds enhances
cosmic ray production in supernova remnants. While additional observations are
needed to confirm this interpretation, further study of Kes 17 is important for
understanding how cosmic rays are accelerated in supernova remnants.Comment: 13 pages, 6 figures, 4 table
Conical twist fields and null polygonal Wilson loops
Using an extension of the concept of twist field in QFT to space–time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang–Mills theory
Outcome of renal grafts after simultaneous kidney/ pancreas transplantation
Nineteen patients with endstage renal failure due to Type 1 (insulin-dependent) diabetes mellitus received simultaneous pancreas/kidney transplants using bladder drainage technique. Another group of 25 Type 1 diabetic patients received pancreas/kidney transplants by the duct occlusion technique. We observed a higher incidence of rejection episodes in the patients of the bladder drainage group than those in the duct occlusion group, 14 of 19 patients (74%) vs 7 of 25 (28%) respectively. Anti CD3 antibodies (Orthoclone, OKT3) as a part of induction treatment was used more often in the bladder drainage group (58%) than in the control group (20%)
Follow-up of X-ray transients detected by SWIFT with COLORES using the BOOTES network
The Burst Observer and Optical Transient Exploring System (BOOTES) is a
network of telescopes that allows the continuous monitoring of transient
astrophysical sources. It was originally devoted to the study of the optical
emission from gamma-ray bursts (GRBs) that occur in the Universe. In this paper
we show the initial results obtained using the spectrograph COLORES (mounted on
BOOTES-2), when observing compact objects of diverse nature.Comment: 6 pages, 2 figues, to appear in "Swift: 10 years of discovery",
Proceedings of Scienc
- …