33,153 research outputs found

    Bilayer graphene: gap tunability and edge properties

    Full text link
    Bilayer graphene -- two coupled single graphene layers stacked as in graphite -- provides the only known semiconductor with a gap that can be tuned externally through electric field effect. Here we use a tight binding approach to study how the gap changes with the applied electric field. Within a parallel plate capacitor model and taking into account screening of the external field, we describe real back gated and/or chemically doped bilayer devices. We show that a gap between zero and midinfrared energies can be induced and externally tuned in these devices, making bilayer graphene very appealing from the point of view of applications. However, applications to nanotechnology require careful treatment of the effect of sample boundaries. This being particularly true in graphene, where the presence of edge states at zero energy -- the Fermi level of the undoped system -- has been extensively reported. Here we show that also bilayer graphene supports surface states localized at zigzag edges. The presence of two layers, however, allows for a new type of edge state which shows an enhanced penetration into the bulk and gives rise to band crossing phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on Theoretical Physics: Dubna-Nano200

    Statistical mapping of sheet aiquile SE-20-9 (national map) making use of ERTS images

    Get PDF
    New possibilities of remote sensing by means of satellites to do research on natural resources are reported. These images make it possible to carry out integrated studies of natural resources in the shortest time possible and with small investments. Various maps and a complete description of each are included. With the use of these satellites, scientists can hopefully plan development projects at the national level

    Fixed Points of the Dissipative Hofstadter Model

    Full text link
    The phase diagram of a dissipative particle in a periodic potential and a magnetic field is studied in the weak barrier limit and in the tight-biding regime. For the case of half flux per plaquette, and for a wide range of values of the dissipation, the physics of the model is determined by a non trivial fixed point. A combination of exact and variational results is used to characterize this fixed point. Finally, it is also argued that there is an intermediate energy scale that separates the weak coupling physics from the tight-binding solution.Comment: 4 pages 3 figure

    Higher particle form factors of branch point twist fields in integrable quantum field theories

    Get PDF
    In this paper we compute higher particle form factors of branch point twist fields. These fields were first described in the context of massive 1+1-dimensional integrable quantum field theories and their correlation functions are related to the bi-partite entanglement entropy. We find analytic expressions for some form factors and check those expressions for consistency, mainly by evaluating the conformal dimension of the corresponding twist field in the underlying conformal field theory. We find that solutions to the form factor equations are not unique so that various techniques need to be used to identify those corresponding to the branch point twist field we are interested in. The models for which we carry out our study are characterized by staircase patterns of various physical quantities as functions of the energy scale. As the latter is varied, the beta-function associated to these theories comes close to vanishing at several points between the deep infrared and deep ultraviolet regimes. In other words, renormalisation group flows approach the vicinity of various critical points before ultimately reaching the ultraviolet fixed point. This feature provides an optimal way of checking the consistency of higher particle form factor solutions, as the changes on the conformal dimension of the twist field at various energy scales can only be accounted for by considering higher particle form factor contributions to the expansion of certain correlation functions.Comment: 25 pages, 4 figures; v2 contains small correction

    XMM-Newton and Chandra observations of G272.2-3.2. Evidence of stellar ejecta in the central region

    Get PDF
    We aim to study the spatial distribution of the physical and chemical properties of the X-ray emitting plasma of the supernova remnant G272.2-3.2, in order to get important constraints on its ionization stage, on the progenitor supernova explosion, and the age of the remnant. We report combined XMM-Newton and Chandra images, median photon energy map, silicon and sulfur equivalent width maps, and a spatially resolved spectral analysis for a set of regions of the remnant. Complementary radio and H{\alpha} observations, available in the literature, are also used to study the multi-wavelength connection of all detected emissions. The X-ray morphology of the remnant displays an overall structure with an almost circular appearance, a centrally brightened hard region, with a peculiar elongated hard structure oriented along the northwest-southeast direction of the central part. The X-ray spectral study of the regions shows distinct K{\alpha} emission-line features of metal elements, confirming the thermal origin of the emission. The X-ray spectra are well represented by an absorbed VNEI thermal plasma model, which produces elevated abundances of Si, S, and Fe in the circular central region, typical of ejecta material. The values of abundances found in the central region of the SNR favor a Type Ia progenitor for this remnant. The outer region shows abundances below the solar value, as expected if the emission arises from the shocked ISM. The relatively low ionization timescales suggests non-equilibrium ionization. We identify the location of the contact discontinuity. Its distance to the outer shock is higher than expected for expansion in a uniform media, what suggests that the remnant spent most of its time in a more dense medium.Comment: 9 pages, 7 figures. Accepted for publication in A&

    Form factors of boundary fields for A(2)-affine Toda field theory

    Get PDF
    In this paper we carry out the boundary form factor program for the A(2)-affine Toda field theory at the self-dual point. The latter is an integrable model consisting of a pair of particles which are conjugated to each other and possessing two bound states resulting from the scattering processes 1 +1 -> 2 and 2+2-> 1. We obtain solutions up to four particle form factors for two families of fields which can be identified with spinless and spin-1 fields of the bulk theory. Previously known as well as new bulk form factor solutions are obtained as a particular limit of ours. Minimal solutions of the boundary form factor equations for all A(n)-affine Toda field theories are given, which will serve as starting point for a generalisation of our results to higher rank algebras.Comment: 24 pages LaTeX, 1 figur

    Brownian motion meets Riemann curvature

    Full text link
    The general covariance of the diffusion equation is exploited in order to explore the curvature effects appearing on brownian motion over a d-dimensional curved manifold. We use the local frame defined by the so called Riemann normal coordinates to derive a general formula for the mean-square geodesic distance (MSD) at the short-time regime. This formula is written in terms of O(d)O(d) invariants that depend on the Riemann curvature tensor. We study the n-dimensional sphere case to validate these results. We also show that the diffusion for positive constant curvature is slower than the diffusion in a plane space, while the diffusion for negative constant curvature turns out to be faster. Finally the two-dimensional case is emphasized, as it is relevant for the single particle diffusion on biomembranes.Comment: 16 pages and 3 figure

    The District Energy-Efficient Retrofitting of Torrelago (Laguna de Duero – Spain)

    Get PDF
    The urban growth is estimated to reach up the 66 % by 2050 and consequently the need of resources within the cities will increase significantly. This, combined with the 40 % of energy consumption and 36 % of CO2 emissions of the building sector, makes necessary to accelerate the transition towards more sustainable cities. The CITyFiED project contributes to this transition, aiming to develop an innovative and holistic methodological approach for energy-efficient district renovation and deliver three large scale demonstration cases in the cities of Lund (Sweden), Laguna de Duero (Spain) and Soma (Turkey). CITyFiED methodology consists of several phases that ease the decision-making tasks towards the district renovation, considering the energy efficiency as the main pillar and local authorities as clients. For the case of Torrelago district (Spain) the intervention consists of a set of energy conservative measures including the facÄ…de retrofitting of 143.025 m2 of living space in 31 twelve-storey buildings; the renovation of the district heating network with a new biomass thermal plant; the integration of renewable energy sources, including a micro-cogeneration system, and the installation of individual smart meters. After the renovation action, one-year monitoring campaign is ongoing. The CITyFiED monitoring platform will collect information from the energy systems and deliver environmental, technical, economic and social key performance indicators by March 2019. At the end of the project the achievement of the predefined goals will be verified: Up to 36 % of energy saving and 3,429 tons-CO2/yr emissions saving covering the 59,4 % of the energy consumption with renewable sources.The research and results presented in this paper evolve from activities related to the CITyFiED project, which has received funding from the European Commission under the Grant Agreement no. 609129. This article is the result of cooperative research work of many experts from various countries and we would like to gratefully acknowledge the rest of the CITyFiED partners

    Applications of quantum integrable systems

    Get PDF
    We present two applications of quantum integrable systems. First, we predict that it is possible to generate high harmonics from solid state devices by demostrating that the emission spectrum for a minimally coupled laser field of frequency ω\omega to an impurity system of a quantum wire, contains multiples of the incoming frequency. Second, evaluating expressions for the conductance in the high temperature regime we show that the caracteristic filling fractions of the Jain sequence, which occur in the fractional quantum Hall effect, can be obtained from quantum wires which are described by minimal affine Toda field theories.Comment: 25 pages of LaTex, 4 figures, based on talk at the 6-th international workshop on conformal field theories and integrable models, (Chernogolovka, September 2002
    • …
    corecore