4,427 research outputs found

    A robust one-step catalytic machine for high fidelity anti-cloning and W-state generation in a multi-qubit system

    Get PDF
    We propose a physically realizable machine which can either generate multiparticle W-like states, or implement high fidelity 1→M1 \to M (M=1,2,...∞M=1,2,... \infty) anti-cloning of an arbitrary qubit state, in a single step. Moreover this universal machine acts as a catalyst in that it is unchanged after either procedure, effectively resetting itself for its next operation. It also possesses an inherent {\em immunity} to decoherence. Most importantly in terms of practical multi-party quantum communication, the machine's robustness in the presence of decoherence actually {\em increases} as the number of qubits MM increases.Comment: 4 pages, 2 figure

    Ultrafast deterministic generation of entanglement in a time-dependent asymmetric two-qubit-cavity system

    Full text link
    We present an efficient scheme for the controlled generation of pure two-qubit states possessing {\em any} desired degree of entanglement and a {\em prescribed} symmetry in two cavity QED based systems, namely, cold trapped ions and flying atoms. This is achieved via on-resonance ion/atom-cavity couplings which are time-dependent and asymmetric, leading to a trapping vacuum state condition which does not arise for identical couplings. A duality in the role of the coupling ratio yields states with a given concurrence but opposing symmetries. The experimental feasibility of the proposed scheme is also discussed.Comment: 4 pages, 4 figure

    Isolating the chiral contribution in optical two-dimensional chiral spectroscopy using linearly polarized light

    Get PDF
    The full development of mono- or multi-dimensional time-resolved spectroscopy techniques incorporating optical activity signals has been strongly hampered by the challenge of identifying the small chiral signals over the large achiral background. Here we propose a new methodology to isolate chiral signals removing the achiral background from two commonly used configurations for performing two dimensional optical spectroscopy, known as BOXCARS and GRadient Assisted Photon Echo Spectroscopy (GRAPES). It is found that in both cases an achiral signal from an isotropic system can be completely eliminated by small manipulations of the relative angles between the linear polarizations of the four input laser pulses. Starting from the formulation of a perturbative expansion of the signal in the angle between the beams and the propagation axis, we derive analytic expressions that can be used to estimate how to change the polarization angles of the four pulses to minimize achiral contributions in the studied configurations. The generalization to any other possible experimental configurations has also been discussed. %We derive analytic expressions to changes required to the polarizations in terms of a perturbative expansion in the angle between the beams and the colinear axis. We also numerically estimate higher order coefficients which cover arbitrarily large angles and thus any experimental configuration.Comment: 7 figure

    Renormalization scheme for a multi-qubit-network

    Full text link
    We present a renormalization scheme which simplifies the dynamics of an important class of interacting multi-qubit systems. We show that a wide class of M+1 qubit systems can be reduced to an equivalent n+1 qubit system with n equal to, or greater than, 2, for any M. Our renormalization scheme faithfully reproduces the overall dynamics of the original system including the entanglement properties. In addition to its direct application to atom-cavity and nanostructure systems, the formalism offers insight into a variety of situations ranging from decoherence due to a spin-bath with its own internal entanglement, through to energy transfer processes in organic systems such as biological photosynthetic units.Comment: 4 pages, 4 figure

    Work, heat and entropy production in bipartite quantum systems

    Get PDF
    In bipartite quantum systems commutation relations between the Hamiltonian of each subsystem and the interaction impose fundamental constraints on the dynamics of each partition. Here we investigate work, heat and entropy production in bipartite systems characterized by particular commutators between their local Hamiltonians and the interaction operator. We consider the formalism of [Weimer, EPL, 83:30008, 2008], in which heat (work) is identified with energy changes that (do not) alter the local von Neumann entropy, as observed in an effective local measurement basis. We demonstrate the consequences of the commutation relations on the work and heat fluxes into each partition, and extend the formalism to open quantum systems where one, or both, partitions are subject to a Markovian thermal bath. We also discuss the relation between heat and entropy in bipartite quantum systems out of thermal equilibrium, and reconcile the aforementioned approach with the second law of thermodynamics.Comment: 16 pages, 2 figures (to appear in NJP
    • 

    corecore